one-yolov5 icon indicating copy to clipboard operation
one-yolov5 copied to clipboard

add build_targets_optim

Open BBuf opened this issue 2 years ago • 4 comments

link https://github.com/Oneflow-Inc/oneflow/pull/9536

BBuf avatar Dec 14 '22 14:12 BBuf

精度验证结果正常 在20个epochs下精度差距 - 0.44599999999999795 ,具体数据如下:

启动指令: python -m oneflow.distributed.launch --nproc_per_node 4 train.py --data data/coco.yaml --weights ' ' --cfg models/yolov5n.yaml --batch 128 --bbox_iou_optim --multi_tensor_optimizer --build_targets_optim --device 4,5,6,7 --epochs 20

epoch batch gpu bbox_iou_optim multi_tensor_optimizer [email protected] [email protected]:.95
baseline 19 128 4 False False 31.198999999999998 17.407
本次实验 19 128 4 True True 30.705 16.961000000000002
本次-baseline 19 -0.4939999999999998 -0.44599999999999795

python -m oneflow.distributed.launch --nproc_per_node 4 train.py --data data/coco.yaml --weights ' ' --cfg models/yolov5n.yaml --batch 128 --bbox_iou_optim --multi_tensor_optimizer --build_targets_optim --device 4,5,6,7 --epochs 20

全部result.csv
               epoch,      train/box_loss,      train/obj_loss,      train/cls_loss,   metrics/precision,      metrics/recall,     metrics/mAP_0.5,metrics/mAP_0.5:0.95,        val/box_loss,        val/obj_loss,        val/cls_loss,               x/lr0,               x/lr1,               x/lr2
                   0,            0.093182,            0.076606,            0.083707,           0.0034488,            0.068622,           0.0041244,             0.00135,            0.082852,            0.057275,            0.079476,            0.070032,           0.0033297,           0.0033297
                   1,            0.076017,            0.077694,            0.076859,             0.61515,             0.02394,            0.016233,           0.0062205,            0.074792,             0.05561,            0.069954,            0.039703,           0.0063332,           0.0063332
                   2,            0.070362,            0.075674,            0.067088,             0.45244,            0.075191,             0.04722,            0.019736,            0.068904,            0.057591,            0.058687,           0.0090428,           0.0090068,           0.0090068
                   3,            0.066933,            0.076041,            0.058288,             0.37677,             0.12383,            0.092613,            0.040804,            0.064703,            0.054779,            0.050293,            0.008515,            0.008515,            0.008515
                   4,            0.064511,            0.074846,            0.052813,             0.39496,             0.17134,             0.13238,            0.063082,            0.062339,            0.054191,            0.044835,             0.00802,             0.00802,             0.00802
                   5,            0.063179,            0.073648,            0.049642,             0.36816,             0.19597,             0.16268,            0.079857,            0.060779,            0.053623,            0.041664,            0.007525,            0.007525,            0.007525
                   6,            0.062163,            0.072918,             0.04724,             0.33008,             0.21392,             0.18523,            0.093926,            0.059704,            0.053372,            0.039742,             0.00703,             0.00703,             0.00703
                   7,            0.061349,            0.073734,            0.045705,             0.38091,             0.23731,             0.20934,             0.10881,            0.058611,            0.053002,            0.037711,            0.006535,            0.006535,            0.006535
                   8,            0.060651,            0.073988,            0.044348,             0.38831,              0.2466,             0.22479,             0.11731,             0.05803,            0.052564,            0.036483,             0.00604,             0.00604,             0.00604
                   9,            0.059962,            0.073595,            0.043254,             0.41124,             0.26339,             0.24331,             0.12977,             0.05743,            0.052763,            0.035348,            0.005545,            0.005545,            0.005545
                  10,            0.059417,            0.072536,            0.042297,             0.41421,             0.27602,             0.25506,             0.13644,            0.057048,            0.052061,            0.034245,             0.00505,             0.00505,             0.00505
                  11,            0.058873,            0.072241,            0.041424,             0.39929,             0.28124,             0.26624,             0.14363,              0.0565,            0.052592,            0.033551,            0.004555,            0.004555,            0.004555
                  12,            0.058494,            0.071352,            0.040809,             0.44046,             0.28721,             0.27507,             0.14928,            0.056286,            0.051716,             0.03283,             0.00406,             0.00406,             0.00406
                  13,            0.057861,            0.072136,            0.039713,             0.42786,             0.29419,             0.28141,              0.1534,            0.056102,            0.051525,             0.03227,            0.003565,            0.003565,            0.003565
                  14,            0.057516,            0.072301,            0.038914,             0.45416,             0.29648,             0.28761,             0.15725,            0.055784,            0.051387,            0.031714,             0.00307,             0.00307,             0.00307
                  15,            0.056954,            0.071751,            0.038346,             0.45428,             0.30127,             0.29314,             0.16077,            0.055604,            0.051567,            0.031298,            0.002575,            0.002575,            0.002575
                  16,             0.05655,            0.071426,             0.03797,              0.4524,             0.30718,             0.29784,             0.16381,            0.055435,            0.051677,            0.030979,             0.00208,             0.00208,             0.00208
                  17,            0.056053,            0.071739,            0.037025,             0.44086,             0.31075,             0.30175,              0.1663,            0.055263,            0.051571,            0.030707,            0.001585,            0.001585,            0.001585
                  18,            0.055577,            0.068904,            0.036529,             0.44778,             0.31155,             0.30443,             0.16825,            0.055255,            0.051014,            0.030517,             0.00109,             0.00109,             0.00109
                  19,            0.054898,             0.07117,            0.035509,             0.45353,             0.31224,             0.30705,             0.16961,            0.055114,            0.051115,            0.030329,            0.000595,            0.000595,            0.000595

ccssu avatar Dec 15 '22 03:12 ccssu

可以再跑一次,我感觉0.5好像差得有点多不知道是不是bug。 @ccssu

BBuf avatar Dec 15 '22 04:12 BBuf

可以再跑一次,我感觉0.5好像差得有点多不知道是不是bug。 @ccssu

精度验证结果大致正常 在 300 个epochs下精度差距 -0.42499999999999716 ,具体数据如下:

启动指令: python -m oneflow.distributed.launch --nproc_per_node 4 train.py --data data/coco.yaml --weights ' ' --cfg models/yolov5n.yaml --batch 128 --bbox_iou_optim --multi_tensor_optimizer --build_targets_optim --device 4,5,6,7 --epochs 300

epoch batch gpu bbox_iou_optim multi_tensor_optimizer [email protected] [email protected]:.95
baseline 299 128 4 False False 45.115 27.431
本次实验 299 128 4 True True 44.373000000000005 27.006000000000004
本次-baseline 299 -0.7419999999999973 -0.42499999999999716

python -m oneflow.distributed.launch --nproc_per_node 4 train.py --data data/coco.yaml --weights ' ' --cfg models/yolov5n.yaml --batch 128 --bbox_iou_optim --multi_tensor_optimizer --build_targets_optim --device 4,5,6,7

ccssu avatar Dec 17 '22 08:12 ccssu

oneflow版本: f59f6dacbe (HEAD -> fused_get_target_offsets, 机器a100 wandb数据:https://wandb.ai/wearmheart/YOLOv5/runs/3l3ku6me?workspace=user-wearmheart 在 300 个epochs下精度差距 -0.42499999999999716

启动指令: python -m oneflow.distributed.launch --nproc_per_node 4 train.py --data data/coco.yaml --weights ' ' --cfg models/yolov5n.yaml --batch 128 --bbox_iou_optim --multi_tensor_optimizer --build_targets_optim --device 4,5,6,7 --epochs 300

epoch batch gpu bbox_iou_optim multi_tensor_optimizer [email protected] [email protected]:.95
baseline 299 128 4 False False 45.115 27.431
本次实验 299 128 4 True True 44.468 26.825
本次-baseline 299 -0.6469999999999985 -0.6060000000000016

python -m oneflow.distributed.launch --nproc_per_node 4 train.py --data data/coco.yaml --weights ' ' --cfg models/yolov5n.yaml --batch 128 --bbox_iou_optim --multi_tensor_optimizer --build_targets_optim --device 4,5,6,7

baseline与current实验对照趋势图 image

ccssu avatar Dec 19 '22 02:12 ccssu