[FEAT] What if - pricing in retail scenario
Open
elephaint
opened this issue 9 months ago
•
18 comments
Adds simple use case for evaluating different pricing scenarios when forecasting product demand for a set of products in retail.
Check out this pull request on
See visual diffs & provide feedback on Jupyter Notebooks.
Powered by ReviewNB
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
11.9196
15.202
0.009
0.0051
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.22
4110.79
5928.17
18859.2
total_time
14.0176
8.5715
0.0058
0.0052
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
142.394
196.363
269.23
1331.02
mape
0.0203
0.0234
0.0304
0.1692
mse
63464.8
123119
213677
4.68961e+06
total_time
11.5947
7.6257
0.0083
0.0075
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
522.427
353.528
398.956
1119.26
mape
0.069
0.0454
0.0512
0.1583
mse
966294
422332
656723
3.17316e+06
total_time
10.9425
14.1064
0.0076
0.0074
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
478.362
361.033
602.926
1340.95
mape
0.0622
0.046
0.0787
0.17
mse
805039
441118
1.61572e+06
6.04619e+06
total_time
13.8168
17.4895
0.0076
0.0074
Plot:
View / edit / reply to this conversation on ReviewNB
Maybe we can include a brief motivation or intro section. Something like:
"What if" scenarios in time series analysis are essential across various sectors for strategic insight and decision-making. In finance, they help investors anticipate market reactions to economic events, enabling proactive risk management. Supply chains utilize these analyses to prepare for demand shifts or supplier issues, enhancing operational resilience. Energy companies forecast the impact of demand fluctuations or equipment failures to optimize production and grid management. In healthcare, scenario analysis aids in resource allocation and patient care optimization by predicting potential changes in staff or patient volumes. Retailers leverage these scenarios to adjust to shifts in consumer behavior or economic conditions, ensuring inventory and marketing strategies remain aligned with market demands. By preparing for potential future conditions, organizations enhance their strategic flexibility and resilience.
Added a sentence
View / edit / reply to this conversation on ReviewNB
Now that our docu is getting very comprehensive, here would be a good place to link to your guide on exogenous variables.
Added a callout-tip
View / edit / reply to this conversation on ReviewNB
This is great. Here I would relate this idea to the concept of elasticity. Maybe something like:
Elasticity measures how one variable responds to changes in another, commonly used to determine how price changes affect demand or supply. High elasticity indicates a significant response to small price changes, while low elasticity shows minimal response. This concept aids in setting pricing strategies and assessing the impact of economic policies on market dynamics.
Another helpful addition would be to include a comment on the underling assumptions. Maybe something like:
Creating "what if" scenarios by forecasting future values based on past observations, such as price changes, involves key assumptions. It presumes that historical events can predict future ones and that past data, like price fluctuations, is sufficient for meaningful analysis. Additionally, this method assumes stable relationships between variables over time and may not fully account for sudden market shifts or external influences. While these assumptions are necessary for modeling, they allow for strategic insights while acknowledging some degree of uncertainty in rapidly evolving environments.
Added a call-out note for elasticity reference and on assumptions.
View / edit / reply to this conversation on ReviewNB
It would be interesting to draw some conclusions. Somethih like:
In the graphs we can see that for specific products in specific regions the discount increases potential sales, while in other regions and and products, price change play a smaller effect on total demand.
Added conclusion to the text above the plot
Added a sentence
View entire conversation on ReviewNB
Added a callout-tip
View entire conversation on ReviewNB
Added a call-out note for elasticity reference and on assumptions.
View entire conversation on ReviewNB
Added conclusion to the text above the plot
View entire conversation on ReviewNB
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
3.4351
4.1647
0.0084
0.0048
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
3.7581
5.4938
0.0057
0.0048
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
142.394
196.363
269.23
1331.02
mape
0.0203
0.0234
0.0304
0.1692
mse
63464.7
123119
213677
4.68961e+06
total_time
6.0091
4.9949
0.0079
0.0069
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
522.427
353.528
398.956
1119.26
mape
0.069
0.0454
0.0512
0.1583
mse
966295
422332
656723
3.17316e+06
total_time
6.3068
3.7764
0.0074
0.0069
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
478.362
361.033
602.926
1340.95
mape
0.0622
0.046
0.0787
0.17
mse
805039
441118
1.61572e+06
6.04619e+06
total_time
5.4251
4.0191
0.0076
0.007
Plot:
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
5.1185
3.4291
0.0084
0.0047
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
2.7238
4.9484
0.0059
0.0049
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
142.394
196.363
269.23
1331.02
mape
0.0203
0.0234
0.0304
0.1692
mse
63464.7
123119
213677
4.68961e+06
total_time
3.6676
4.1126
0.008
0.007
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
522.427
353.528
398.956
1119.26
mape
0.069
0.0454
0.0512
0.1583
mse
966294
422332
656723
3.17316e+06
total_time
3.6999
4.8037
0.0077
0.0072
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
478.362
361.033
602.926
1340.95
mape
0.0622
0.046
0.0787
0.17
mse
805039
441118
1.61572e+06
6.04619e+06
total_time
5.3556
9.2854
0.0078
0.008
Plot:
Thanks for the changes @elephaint! This is ready for your review @AzulGarza.
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
14.7379
16.2159
0.009
0.0049
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
9.7305
13.3278
0.0059
0.0049
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
178.293
196.363
269.23
1331.02
mape
0.0234
0.0234
0.0304
0.1692
mse
121588
123119
213677
4.68961e+06
total_time
14.5876
15.0963
0.0081
0.0073
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
465.532
353.528
398.956
1119.26
mape
0.062
0.0454
0.0512
0.1583
mse
835120
422332
656723
3.17316e+06
total_time
13.2051
9.0379
0.0075
0.0071
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
558.649
361.033
602.926
1340.95
mape
0.0697
0.046
0.0787
0.17
mse
1.22721e+06
441118
1.61572e+06
6.04619e+06
total_time
13.2997
11.2499
0.0076
0.0073
Plot:
View / edit / reply to this conversation on ReviewNB
let's make colab changes in #349
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
6.1594
10.1481
0.0085
0.0045
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
6.0453
11.1343
0.0051
0.0042
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
178.293
196.363
269.23
1331.02
mape
0.0234
0.0234
0.0304
0.1692
mse
121588
123119
213677
4.68961e+06
total_time
10.7547
18.7403
0.0102
0.0089
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
465.532
353.528
398.956
1119.26
mape
0.062
0.0454
0.0512
0.1583
mse
835120
422332
656723
3.17316e+06
total_time
26.3699
24.0487
0.007
0.0063
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
558.649
361.033
602.926
1340.95
mape
0.0697
0.046
0.0787
0.17
mse
1.22721e+06
441118
1.61572e+06
6.04619e+06
total_time
29.9475
29.4429
0.007
0.0064
Plot:
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.935
199.132
2571.33
10604.2
total_time
39.8134
37.0556
0.0078
0.0043
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.22
4110.79
5928.17
18859.2
total_time
31.1906
42.0285
0.0052
0.0043
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
178.293
196.363
269.23
1331.02
mape
0.0234
0.0234
0.0304
0.1692
mse
121588
123119
213677
4.68961e+06
total_time
31.0713
41.6263
0.0072
0.0063
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
465.532
353.528
398.956
1119.26
mape
0.062
0.0454
0.0512
0.1583
mse
835120
422332
656723
3.17316e+06
total_time
36.7378
31.4584
0.007
0.0064
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
558.649
361.033
602.926
1340.95
mape
0.0697
0.046
0.0787
0.17
mse
1.22721e+06
441118
1.61572e+06
6.04619e+06
total_time
33.2935
29.6788
0.0069
0.006
Plot:
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
12.1653
13.4389
0.0082
0.0045
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
7.7063
13.4461
0.0054
0.0046
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
178.293
196.363
269.23
1331.02
mape
0.0234
0.0234
0.0304
0.1692
mse
121588
123119
213677
4.68961e+06
total_time
9.5095
15.4325
0.0076
0.0065
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
465.532
353.528
398.956
1119.26
mape
0.062
0.0454
0.0512
0.1583
mse
835120
422332
656723
3.17316e+06
total_time
23.4231
23.5904
0.0071
0.0066
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
558.649
361.033
602.926
1340.95
mape
0.0697
0.046
0.0787
0.17
mse
1.22721e+06
441118
1.61572e+06
6.04619e+06
total_time
23.9699
26.1015
0.0074
0.0067
Plot:
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
21.4599
17.5195
0.008
0.0043
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
22.8177
21.7764
0.0053
0.0044
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
178.293
196.363
269.23
1331.02
mape
0.0234
0.0234
0.0304
0.1692
mse
121588
123119
213677
4.68961e+06
total_time
24.2362
24.0598
0.0075
0.0065
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
465.532
353.528
398.956
1119.26
mape
0.062
0.0454
0.0512
0.1583
mse
835120
422332
656723
3.17316e+06
total_time
21.6348
23.8251
0.0069
0.0064
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
558.649
361.033
602.926
1340.95
mape
0.0697
0.046
0.0787
0.17
mse
1.22721e+06
441118
1.61572e+06
6.04619e+06
total_time
22.5998
24.9677
0.0071
0.0067
Plot:
Experiment Results
Experiment 1: air-passengers
Description:
variable
experiment
h
12
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
12.6793
11.0623
47.8333
76
mape
0.027
0.0232
0.0999
0.1425
mse
213.936
199.132
2571.33
10604.2
total_time
37.886
28.3899
0.008
0.0043
Plot:
Experiment 2: air-passengers
Description:
variable
experiment
h
24
season_length
12
freq
MS
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
58.1031
58.4587
71.25
115.25
mape
0.1257
0.1267
0.1552
0.2358
mse
4040.21
4110.79
5928.17
18859.2
total_time
34.8192
35.9503
0.0051
0.0044
Plot:
Experiment 3: electricity-multiple-series
Description:
variable
experiment
h
24
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
178.293
196.363
269.23
1331.02
mape
0.0234
0.0234
0.0304
0.1692
mse
121588
123119
213677
4.68961e+06
total_time
46.3236
36.7472
0.0069
0.0062
Plot:
Experiment 4: electricity-multiple-series
Description:
variable
experiment
h
168
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
465.532
353.528
398.956
1119.26
mape
0.062
0.0454
0.0512
0.1583
mse
835120
422332
656723
3.17316e+06
total_time
34.3658
42.6421
0.0068
0.0063
Plot:
Experiment 5: electricity-multiple-series
Description:
variable
experiment
h
336
season_length
24
freq
H
level
None
n_windows
1
Results:
metric
timegpt-1
timegpt-1-long-horizon
SeasonalNaive
Naive
mae
558.649
361.033
602.926
1340.95
mape
0.0697
0.046
0.0787
0.17
mse
1.22721e+06
441118
1.61572e+06
6.04619e+06
total_time
45.5418
77.4072
0.007
0.0066
Plot: