nixtla
nixtla copied to clipboard
Example - Intermittent demand
Description:
This is one of the new examples of TimeGPT use cases.
Check out this pull request on
See visual diffs & provide feedback on Jupyter Notebooks.
Powered by ReviewNB
Experiment Results
Experiment 1: air-passengers
Description:
variable | experiment |
---|---|
h | 12 |
season_length | 12 |
freq | MS |
level | None |
n_windows | 1 |
Results:
metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive |
---|---|---|---|---|
mae | 12.6793 | 11.0623 | 47.8333 | 76 |
mape | 0.027 | 0.0232 | 0.0999 | 0.1425 |
mse | 213.936 | 199.132 | 2571.33 | 10604.2 |
total_time | 2.5327 | 2.8544 | 0.0085 | 0.0048 |
Plot:
Experiment 2: air-passengers
Description:
variable | experiment |
---|---|
h | 24 |
season_length | 12 |
freq | MS |
level | None |
n_windows | 1 |
Results:
metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive |
---|---|---|---|---|
mae | 58.1031 | 58.4587 | 71.25 | 115.25 |
mape | 0.1257 | 0.1267 | 0.1552 | 0.2358 |
mse | 4040.21 | 4110.79 | 5928.17 | 18859.2 |
total_time | 3.4817 | 6.2854 | 0.0057 | 0.0048 |
Plot:
Experiment 3: electricity-multiple-series
Description:
variable | experiment |
---|---|
h | 24 |
season_length | 24 |
freq | H |
level | None |
n_windows | 1 |
Results:
metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive |
---|---|---|---|---|
mae | 142.394 | 196.363 | 269.23 | 1331.02 |
mape | 0.0203 | 0.0234 | 0.0304 | 0.1692 |
mse | 63464.7 | 123119 | 213677 | 4.68961e+06 |
total_time | 5.2223 | 6.9177 | 0.0076 | 0.0067 |
Plot:
Experiment 4: electricity-multiple-series
Description:
variable | experiment |
---|---|
h | 168 |
season_length | 24 |
freq | H |
level | None |
n_windows | 1 |
Results:
metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive |
---|---|---|---|---|
mae | 522.427 | 353.528 | 398.956 | 1119.26 |
mape | 0.069 | 0.0454 | 0.0512 | 0.1583 |
mse | 966294 | 422332 | 656723 | 3.17316e+06 |
total_time | 10.9579 | 7.7167 | 0.0074 | 0.0068 |
Plot:
Experiment 5: electricity-multiple-series
Description:
variable | experiment |
---|---|
h | 336 |
season_length | 24 |
freq | H |
level | None |
n_windows | 1 |
Results:
metric | timegpt-1 | timegpt-1-long-horizon | SeasonalNaive | Naive |
---|---|---|---|---|
mae | 478.362 | 361.033 | 602.926 | 1340.95 |
mape | 0.0622 | 0.046 | 0.0787 | 0.17 |
mse | 805039 | 441118 | 1.61572e+06 | 6.04619e+06 |
total_time | 9.8451 | 10.3982 | 0.0075 | 0.007 |
Plot:
View / edit / reply to this conversation on ReviewNB
marcopeix commented on 2024-04-29T13:27:03Z ----------------------------------------------------------------
Could the dataset of sales of car parts (https://zenodo.org/records/4656021) be a better example of intermittent forecasting?
This example will be left as a draft for now since the data is not really intermittent and TimeGPT's performance raised some issues.
Closing this since the team did another tutorial on intermittent demand.