neuralangelo
neuralangelo copied to clipboard
tnt datasets church demo result is bad.
any one try the tnt datasets's church demo? the result (50k iters) is not good.
here is my train paramters:
Training with 1 GPUs. Using random seed 0 Make folder logs/church
- checkpoint:
- save_epoch: 9999999999
- save_iter: 20000
- save_latest_iter: 9999999999
- save_period: 9999999999
- strict_resume: True
- cudnn:
- benchmark: True
- deterministic: False
- data:
- name: dummy
- num_images: None
- num_workers: 4
- preload: True
- readjust:
- center: [0.0, 0.0, 0.0]
- scale: 1.0
- root: datasets/church
- train:
- batch_size: 2
- image_size: [1086, 1960]
- subset: None
- type: projects.neuralangelo.data
- use_multi_epoch_loader: True
- val:
- batch_size: 1
- image_size: [300, 541]
- max_viz_samples: 16
- subset: 1
- image_save_iter: 9999999999
- inference_args:
- local_rank: 0
- logdir: logs/church
- logging_iter: 9999999999999
- max_epoch: 9999999999
- max_iter: 500000
- metrics_epoch: None
- metrics_iter: None
- model:
- appear_embed:
- dim: 8
- enabled: False
- background:
- enabled: False
- encoding:
- levels: 10
- type: fourier
- encoding_view:
- levels: 3
- type: spherical
- mlp:
- activ: relu
- activ_density: softplus
- activ_density_params:
- activ_params:
- hidden_dim: 256
- hidden_dim_rgb: 128
- num_layers: 8
- num_layers_rgb: 2
- skip: [4]
- skip_rgb: []
- view_dep: True
- white: False
- object:
- rgb:
- encoding_view:
- levels: 3
- type: spherical
- mlp:
- activ: relu_
- activ_params:
- hidden_dim: 256
- num_layers: 4
- skip: []
- weight_norm: True
- mode: idr
- encoding_view:
- s_var:
- anneal_end: 0.1
- init_val: 3.0
- sdf:
- encoding:
- coarse2fine:
- enabled: True
- init_active_level: 8
- step: 5000
- hashgrid:
- dict_size: 20
- dim: 4
- max_logres: 11
- min_logres: 5
- range: [-2, 2]
- levels: 16
- type: hashgrid
- coarse2fine:
- gradient:
- mode: numerical
- taps: 4
- mlp:
- activ: softplus
- activ_params:
- beta: 100
- geometric_init: True
- hidden_dim: 256
- inside_out: True
- num_layers: 1
- out_bias: 0.5
- skip: []
- weight_norm: True
- encoding:
- rgb:
- render:
- num_sample_hierarchy: 4
- num_samples:
- background: 0
- coarse: 64
- fine: 16
- rand_rays: 512
- stratified: True
- type: projects.neuralangelo.model
- appear_embed:
- nvtx_profile: False
- optim:
- fused_opt: False
- params:
- lr: 0.001
- weight_decay: 0.01
- sched:
- gamma: 10.0
- iteration_mode: True
- step_size: 9999999999
- two_steps: [300000, 400000]
- type: two_steps_with_warmup
- warm_up_end: 5000
- type: AdamW
- pretrained_weight: None
- source_filename: projects/neuralangelo/configs/custom/church.yaml
- speed_benchmark: False
- test_data:
- name: dummy
- num_workers: 0
- test:
- batch_size: 1
- is_lmdb: False
- roots: None
- type: imaginaire.datasets.images
- timeout_period: 9999999
- trainer:
- amp_config:
- backoff_factor: 0.5
- enabled: False
- growth_factor: 2.0
- growth_interval: 2000
- init_scale: 65536.0
- ddp_config:
- find_unused_parameters: False
- static_graph: True
- depth_vis_scale: 0.5
- ema_config:
- beta: 0.9999
- enabled: False
- load_ema_checkpoint: False
- start_iteration: 0
- grad_accum_iter: 1
- image_to_tensorboard: False
- init:
- gain: None
- type: none
- loss_weight:
- curvature: 0.0005
- eikonal: 0.1
- render: 1.0
- type: projects.neuralangelo.trainer
- amp_config:
- validation_iter: 5000
- wandb_image_iter: 10000
- wandb_scalar_iter: 100 cudnn benchmark: True cudnn deterministic: False Setup trainer. Using random seed 0 model parameter count: 53,029,160 Initialize model weights using type: none, gain: None Using random seed 0 Allow TensorFloat32 operations on supported devices
Hi @qq297110281
The Church scene does not come with the poses due to data corruption from TnT. Therefore, we did not report Church scene results for reproducibility. Nonetheless, I also experimented with the Church scene and I have found that COLMAP simply cannot recover the correct trajectory due to similarities/ambiguities of the chairs. Many poses end up opposite of where cameras are looking at. I would inspect your colmap results before running the Church scene.
Let us know if you have made progress!
model: appear_embed: dim: 8 enabled: False
maybe you should enable the appearence embeding by setting:
model: appear_embed: dim: 32 enabled: True