neuralangelo icon indicating copy to clipboard operation
neuralangelo copied to clipboard

tnt datasets church demo result is bad.

Open qq297110281 opened this issue 1 year ago • 2 comments

any one try the tnt datasets's church demo? the result (50k iters) is not good. snapshot-church-100 snapshot-church-201 snapshot-church-302

here is my train paramters:

Training with 1 GPUs. Using random seed 0 Make folder logs/church

  • checkpoint:
    • save_epoch: 9999999999
    • save_iter: 20000
    • save_latest_iter: 9999999999
    • save_period: 9999999999
    • strict_resume: True
  • cudnn:
    • benchmark: True
    • deterministic: False
  • data:
    • name: dummy
    • num_images: None
    • num_workers: 4
    • preload: True
    • readjust:
      • center: [0.0, 0.0, 0.0]
      • scale: 1.0
    • root: datasets/church
    • train:
      • batch_size: 2
      • image_size: [1086, 1960]
      • subset: None
    • type: projects.neuralangelo.data
    • use_multi_epoch_loader: True
    • val:
      • batch_size: 1
      • image_size: [300, 541]
      • max_viz_samples: 16
      • subset: 1
  • image_save_iter: 9999999999
  • inference_args:
  • local_rank: 0
  • logdir: logs/church
  • logging_iter: 9999999999999
  • max_epoch: 9999999999
  • max_iter: 500000
  • metrics_epoch: None
  • metrics_iter: None
  • model:
    • appear_embed:
      • dim: 8
      • enabled: False
    • background:
      • enabled: False
      • encoding:
        • levels: 10
        • type: fourier
      • encoding_view:
        • levels: 3
        • type: spherical
      • mlp:
        • activ: relu
        • activ_density: softplus
        • activ_density_params:
        • activ_params:
        • hidden_dim: 256
        • hidden_dim_rgb: 128
        • num_layers: 8
        • num_layers_rgb: 2
        • skip: [4]
        • skip_rgb: []
      • view_dep: True
      • white: False
    • object:
      • rgb:
        • encoding_view:
          • levels: 3
          • type: spherical
        • mlp:
          • activ: relu_
          • activ_params:
          • hidden_dim: 256
          • num_layers: 4
          • skip: []
          • weight_norm: True
        • mode: idr
      • s_var:
        • anneal_end: 0.1
        • init_val: 3.0
      • sdf:
        • encoding:
          • coarse2fine:
            • enabled: True
            • init_active_level: 8
            • step: 5000
          • hashgrid:
            • dict_size: 20
            • dim: 4
            • max_logres: 11
            • min_logres: 5
            • range: [-2, 2]
          • levels: 16
          • type: hashgrid
        • gradient:
          • mode: numerical
          • taps: 4
        • mlp:
          • activ: softplus
          • activ_params:
            • beta: 100
          • geometric_init: True
          • hidden_dim: 256
          • inside_out: True
          • num_layers: 1
          • out_bias: 0.5
          • skip: []
          • weight_norm: True
    • render:
      • num_sample_hierarchy: 4
      • num_samples:
        • background: 0
        • coarse: 64
        • fine: 16
      • rand_rays: 512
      • stratified: True
    • type: projects.neuralangelo.model
  • nvtx_profile: False
  • optim:
    • fused_opt: False
    • params:
      • lr: 0.001
      • weight_decay: 0.01
    • sched:
      • gamma: 10.0
      • iteration_mode: True
      • step_size: 9999999999
      • two_steps: [300000, 400000]
      • type: two_steps_with_warmup
      • warm_up_end: 5000
    • type: AdamW
  • pretrained_weight: None
  • source_filename: projects/neuralangelo/configs/custom/church.yaml
  • speed_benchmark: False
  • test_data:
    • name: dummy
    • num_workers: 0
    • test:
      • batch_size: 1
      • is_lmdb: False
      • roots: None
    • type: imaginaire.datasets.images
  • timeout_period: 9999999
  • trainer:
    • amp_config:
      • backoff_factor: 0.5
      • enabled: False
      • growth_factor: 2.0
      • growth_interval: 2000
      • init_scale: 65536.0
    • ddp_config:
      • find_unused_parameters: False
      • static_graph: True
    • depth_vis_scale: 0.5
    • ema_config:
      • beta: 0.9999
      • enabled: False
      • load_ema_checkpoint: False
      • start_iteration: 0
    • grad_accum_iter: 1
    • image_to_tensorboard: False
    • init:
      • gain: None
      • type: none
    • loss_weight:
      • curvature: 0.0005
      • eikonal: 0.1
      • render: 1.0
    • type: projects.neuralangelo.trainer
  • validation_iter: 5000
  • wandb_image_iter: 10000
  • wandb_scalar_iter: 100 cudnn benchmark: True cudnn deterministic: False Setup trainer. Using random seed 0 model parameter count: 53,029,160 Initialize model weights using type: none, gain: None Using random seed 0 Allow TensorFloat32 operations on supported devices

qq297110281 avatar Sep 05 '23 10:09 qq297110281

Hi @qq297110281

The Church scene does not come with the poses due to data corruption from TnT. Therefore, we did not report Church scene results for reproducibility. Nonetheless, I also experimented with the Church scene and I have found that COLMAP simply cannot recover the correct trajectory due to similarities/ambiguities of the chairs. Many poses end up opposite of where cameras are looking at. I would inspect your colmap results before running the Church scene.

Let us know if you have made progress!

mli0603 avatar Sep 05 '23 14:09 mli0603

model: appear_embed: dim: 8 enabled: False

maybe you should enable the appearence embeding by setting:

model: appear_embed: dim: 32 enabled: True

hlpan avatar Sep 08 '23 08:09 hlpan