[BUG] test_exact_percentile_groupby FAILED: hash_aggregate_test.py::test_exact_percentile_groupby with DATAGEN seed 1713362217
Describe the bug test_exact_percentile_groupby FAILED: hash_aggregate_test.py::test_exact_percentile_groupby on DB-11.3
[2024-04-17T12:33:01.024Z] FAILED ../../src/main/python/hash_aggregate_test.py::test_exact_percentile_groupby[[('key', RepeatSeq(Integer)), ('val', Double), ('freq', Long(not_null))]1][DATAGEN_SEED=1713347944, TZ=UTC, INJECT_OOM, IGNORE_ORDER] - AssertionError: GPU and CPU are not both null at [44, 'percentile(val, 0.1,...
Detailed failures as below
=================================== FAILURES ===================================
_
linux -- Python 3.8.10 /usr/bin/python
data_gen = [('key', RepeatSeq(Integer)), ('val', Double), ('freq', Long(not_null))]
@ignore_order
@pytest.mark.parametrize('data_gen', exact_percentile_groupby_data_gen, ids=idfn)
def test_exact_percentile_groupby(data_gen):
> assert_gpu_and_cpu_are_equal_collect(
lambda spark: exact_percentile_groupby(gen_df(spark, data_gen))
)
../../src/main/python/hash_aggregate_test.py:998:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../src/main/python/asserts.py:595: in assert_gpu_and_cpu_are_equal_collect
_assert_gpu_and_cpu_are_equal(func, 'COLLECT', conf=conf, is_cpu_first=is_cpu_first, result_canonicalize_func_before_compare=result_canonicalize_func_before_compare)
../../src/main/python/asserts.py:517: in _assert_gpu_and_cpu_are_equal
assert_equal(from_cpu, from_gpu)
../../src/main/python/asserts.py:107: in assert_equal
_assert_equal(cpu, gpu, float_check=get_float_check(), path=[])
../../src/main/python/asserts.py:43: in _assert_equal
_assert_equal(cpu[index], gpu[index], float_check, path + [index])
../../src/main/python/asserts.py:36: in _assert_equal
_assert_equal(cpu[field], gpu[field], float_check, path + [field])
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
cpu = None, gpu = 0.0
float_check = <function get_float_check.<locals>.<lambda> at 0x7fa1f8581820>
path = [44, 'percentile(val, 0.1, abs(freq))']
def _assert_equal(cpu, gpu, float_check, path):
t = type(cpu)
if (t is Row):
assert len(cpu) == len(gpu), "CPU and GPU row have different lengths at {} CPU: {} GPU: {}".format(path, len(cpu), len(gpu))
if hasattr(cpu, "__fields__") and hasattr(gpu, "__fields__"):
assert cpu.__fields__ == gpu.__fields__, "CPU and GPU row have different fields at {} CPU: {} GPU: {}".format(path, cpu.__fields__, gpu.__fields__)
for field in cpu.__fields__:
_assert_equal(cpu[field], gpu[field], float_check, path + [field])
else:
for index in range(len(cpu)):
_assert_equal(cpu[index], gpu[index], float_check, path + [index])
elif (t is list):
assert len(cpu) == len(gpu), "CPU and GPU list have different lengths at {} CPU: {} GPU: {}".format(path, len(cpu), len(gpu))
for index in range(len(cpu)):
_assert_equal(cpu[index], gpu[index], float_check, path + [index])
elif (t is tuple):
assert len(cpu) == len(gpu), "CPU and GPU list have different lengths at {} CPU: {} GPU: {}".format(path, len(cpu), len(gpu))
for index in range(len(cpu)):
_assert_equal(cpu[index], gpu[index], float_check, path + [index])
elif (t is pytypes.GeneratorType):
index = 0
# generator has no zip :( so we have to do this the hard way
done = False
while not done:
sub_cpu = None
sub_gpu = None
try:
sub_cpu = next(cpu)
except StopIteration:
done = True
try:
sub_gpu = next(gpu)
except StopIteration:
done = True
if done:
assert sub_cpu == sub_gpu and sub_cpu == None, "CPU and GPU generators have different lengths at {}".format(path)
else:
_assert_equal(sub_cpu, sub_gpu, float_check, path + [index])
index = index + 1
elif (t is dict):
# The order of key/values is not guaranteed in python dicts, nor are they guaranteed by Spark
# so sort the items to do our best with ignoring the order of dicts
cpu_items = list(cpu.items()).sort(key=_RowCmp)
gpu_items = list(gpu.items()).sort(key=_RowCmp)
_assert_equal(cpu_items, gpu_items, float_check, path + ["map"])
elif (t is int):
assert cpu == gpu, "GPU and CPU int values are different at {}".format(path)
elif (t is float):
if (math.isnan(cpu)):
assert math.isnan(gpu), "GPU and CPU float values are different at {}".format(path)
else:
assert float_check(cpu, gpu), "GPU and CPU float values are different {}".format(path)
elif isinstance(cpu, str):
assert cpu == gpu, "GPU and CPU string values are different at {}".format(path)
elif isinstance(cpu, datetime):
assert cpu == gpu, "GPU and CPU timestamp values are different at {}".format(path)
elif isinstance(cpu, date):
assert cpu == gpu, "GPU and CPU date values are different at {}".format(path)
elif isinstance(cpu, bool):
assert cpu == gpu, "GPU and CPU boolean values are different at {}".format(path)
elif isinstance(cpu, Decimal):
assert cpu == gpu, "GPU and CPU decimal values are different at {}".format(path)
elif isinstance(cpu, bytearray):
assert cpu == gpu, "GPU and CPU bytearray values are different at {}".format(path)
elif isinstance(cpu, timedelta):
# Used by interval type DayTimeInterval for Pyspark 3.3.0+
assert cpu == gpu, "GPU and CPU timedelta values are different at {}".format(path)
elif (cpu == None):
> assert cpu == gpu, "GPU and CPU are not both null at {}".format(path)
E AssertionError: GPU and CPU are not both null at [44, 'percentile(val, 0.1, abs(freq))']
../../src/main/python/asserts.py:100: AssertionError
----------------------------- Captured stdout call -----------------------------
### CPU RUN ###
### GPU RUN ###
### COLLECT: GPU TOOK 1.2428700923919678 CPU TOOK 0.9993729591369629 ###
--- CPU OUTPUT
+++ GPU OUTPUT
@@ -42,7 +42,7 @@
Row(key=-699991384, percentile(val, 0.1)=inf, percentile(val, 0)=-3.233434253460157e+218, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-3.233434253460157e+218, inf, inf, nan, nan], percentile(val, 0.1, abs(freq))=-3.233434253460157e+218, percentile(val, 0, abs(freq))=-3.233434253460157e+218, percentile(val, 1, abs(freq))=nan, percentile(val, array(0.1), abs(freq))=[-3.233434253460157e+218], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[-3.233434253460157e+218, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[-3.233434253460157e+218, -3.233434253460157e+218, inf, nan, nan])
Row(key=-663106112, percentile(val, 0.1)=inf, percentile(val, 0)=-8.040719402880842e-261, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, nan, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-8.040719402880842e-261, inf, nan, nan, nan], percentile(val, 0.1, abs(freq))=-8.040719402880842e-261, percentile(val, 0, abs(freq))=-8.040719402880842e-261, percentile(val, 1, abs(freq))=nan, percentile(val, array(0.1), abs(freq))=[-8.040719402880842e-261], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[-8.040719402880842e-261, nan, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[-8.040719402880842e-261, -8.040719402880842e-261, nan, nan, nan])
Row(key=-642917234, percentile(val, 0.1)=inf, percentile(val, 0)=-1.0, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-1.0, -0.998, inf, nan, nan], percentile(val, 0.1, abs(freq))=inf, percentile(val, 0, abs(freq))=inf, percentile(val, 1, abs(freq))=nan, percentile(val, array(0.1), abs(freq))=[inf], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[inf, nan, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[inf, inf, nan, nan, nan])
-Row(key=-421192727, percentile(val, 0.1)=inf, percentile(val, 0)=-2.158391834949709e-101, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, nan, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-2.158391834949709e-101, 1.884807116393614e+262, nan, nan, nan], percentile(val, 0.1, abs(freq))=None, percentile(val, 0, abs(freq))=None, percentile(val, 1, abs(freq))=None, percentile(val, array(0.1), abs(freq))=None, percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=None, percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=None)
+Row(key=-421192727, percentile(val, 0.1)=inf, percentile(val, 0)=-2.158391834949709e-101, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, nan, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-2.158391834949709e-101, 1.884807116393614e+262, nan, nan, nan], percentile(val, 0.1, abs(freq))=0.0, percentile(val, 0, abs(freq))=0.0, percentile(val, 1, abs(freq))=0.0, percentile(val, array(0.1), abs(freq))=[0.0], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[0.0, 0.0, 0.0], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[4.9e-322, 5e-324, 5e-324, 2.5e-323, 5e-324])
Row(key=-367157519, percentile(val, 0.1)=inf, percentile(val, 0)=inf, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[inf, inf, inf, nan, nan], percentile(val, 0.1, abs(freq))=inf, percentile(val, 0, abs(freq))=inf, percentile(val, 1, abs(freq))=nan, percentile(val, array(0.1), abs(freq))=[inf], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[inf, inf, inf, nan, nan])
Row(key=-360509906, percentile(val, 0.1)=inf, percentile(val, 0)=-2.018187239055581e-271, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-2.018187239055581e-271, 1.1766604053981384e+156, inf, nan, nan], percentile(val, 0.1, abs(freq))=inf, percentile(val, 0, abs(freq))=-2.018187239055581e-271, percentile(val, 1, abs(freq))=nan, percentile(val, array(0.1), abs(freq))=[inf], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[-2.018187239055581e-271, -2.018187239055581e-271, inf, nan, nan])
Row(key=-355871595, percentile(val, 0.1)=inf, percentile(val, 0)=-3.451721078952032e-86, percentile(val, 1)=nan, percentile(val, array(0.1))=[inf], percentile(val, array())=None, percentile(val, array(0.1, 0.5, 0.9))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1))=[-3.451721078952032e-86, inf, inf, nan, nan], percentile(val, 0.1, abs(freq))=inf, percentile(val, 0, abs(freq))=inf, percentile(val, 1, abs(freq))=nan, percentile(val, array(0.1), abs(freq))=[inf], percentile(val, array(), abs(freq))=None, percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[inf, inf, nan], percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[inf, inf, inf, nan, nan])
Failure not tot observed in today's nightly, without code update,
1023 FAILD, 1024 PASS, same Revision: 66f2cc5
keep monitoring!
Can you document what the datagen seed was for original failure and try to repro it? We want to keep this open for original failure with what the datagen seed is.
Can you document what the datagen seed was for original failure and try to repro it? We want to keep this open for original failure with what the datagen seed is.
Updated title: DATAGEN seed = 1713362217
Diff is coming from CPU producing nulls when the GPU does not. Splitting out the differing columns on their own lines, CPU:
percentile(val, 0.1, abs(freq))=None,
percentile(val, 0, abs(freq))=None,
percentile(val, 1, abs(freq))=None,
percentile(val, array(0.1), abs(freq))=None,
percentile(val, array(), abs(freq))=None,
percentile(val, array(0.1, 0.5, 0.9), abs(freq))=None,
percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=None)
GPU:
percentile(val, 0.1, abs(freq))=0.0,
percentile(val, 0, abs(freq))=0.0,
percentile(val, 1, abs(freq))=0.0,
percentile(val, array(0.1), abs(freq))=[0.0],
percentile(val, array(), abs(freq))=None,
percentile(val, array(0.1, 0.5, 0.9), abs(freq))=[0.0, 0.0, 0.0],
percentile(val, array(0, 0.0001, 0.5, 0.9999, 1), abs(freq))=[4.9e-322, 5e-324, 5e-324, 2.5e-323, 5e-324])
Does this need a fixed seed, or do we need to fix the underlying problem?
I have raised https://github.com/NVIDIA/spark-rapids-jni/issues/2029. To me, it looks like a bug in how percentiles are derived from the constructed histograms.
The seed that triggers this issue should be 1713347944.