TensorRT icon indicating copy to clipboard operation
TensorRT copied to clipboard

Error Code 10: Internal Error (Could not find any implementation for node failure of TensorRT 8.5 when running on GPU Jetson Xavier NX

Open fettahyildizz opened this issue 1 year ago • 10 comments

Description

When I try to convert SuperPoint model from onnx to tensorrt engine using trtexec I faced

[optimizer.cpp::computeCosts::3728] Error Code 10: Internal Error (Could not find any implementation for node {ForeignNode[/Flatten...(Unnamed Layer* 139) [Shuffle]]}

error. It works in tensorrt 8.6 but since our workspace is Jetson Xavier NX and the latest supported Jetpack version for Xavier NX has Tensorrt 8.5, upgrading Tensorrt is not an option for now.

Environment

TensorRT Version: 8.5

NVIDIA GPU: Jetson Xavier NX

CUDA Version: 11.4

Operating System: Jetpack 5.1.4

Python Version (if applicable): 3.8

Relevant Files

Model link: Superpoint ONNX model

Steps To Reproduce

/trtexec --onnx=superpoint_v1.onnx --saveEngine=superpoint_v1.trt

fettahyildizz avatar Nov 20 '24 08:11 fettahyildizz

Maybe you need location the code block of ForeignNode[/Flatten...(Unnamed Layer* 139), and rewrite some ops.

lix19937 avatar Nov 20 '24 09:11 lix19937

ed location the code blo

Hi @lix19937, I haven't done such thing before, is there some code pieces I can follow? Do I need to rewrite ops in pytorch environment or TensorRt environment?

fettahyildizz avatar Nov 20 '24 09:11 fettahyildizz

That is say, you need know which net module(layers/ops) match this foreign node by context and key layer information in torch forward graph. Usually, you can export the model in a gradual manner. Like follow


def forward(x, y):
   a = self.module1(x)
   b = self.module2(b)
   c = self.module3(y)
   return a*c

to


def forward(x, y):
   a = self.module1(x)
   # b = self.module2(b)
   # c = self.module3(y)
   return a

or


def forward(x, y):
   a = self.module1(x)
   b = self.module2(b)
   # c = self.module3(y)
   return b

lix19937 avatar Nov 20 '24 10:11 lix19937

Hi @lix19937, what I don't understand is Flatten is a basic operation, there is no way TensorRt wouldn't support this ops in 8.5 and start to support it in 8.6. I feel like I'm missing something basic here.

Image

This is the only Flatten node available in my onnx model.

I shared forward method below. I couldn't find what method matches with Flatten node.

def forward(self, data):
        """ Compute keypoints, scores, descriptors for image """
        # Shared Encoder
        x = self.relu(self.conv1a(data))
        x = self.relu(self.conv1b(x))
        x = self.pool(x)
        x = self.relu(self.conv2a(x))
        x = self.relu(self.conv2b(x))
        x = self.pool(x)
        x = self.relu(self.conv3a(x))
        x = self.relu(self.conv3b(x))
        x = self.pool(x)
        x = self.relu(self.conv4a(x))
        x = self.relu(self.conv4b(x))

        # Compute the dense keypoint scores
        cPa = self.relu(self.convPa(x))
        scores = self.convPb(cPa)
        scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
        b, _, h, w = scores.shape
        scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
        scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
        scores = simple_nms(scores, default_config['nms_radius'])

        # Extract keypoints
        keypoints = [
            torch.nonzero(s > default_config['keypoint_threshold'])
            for s in scores]
        scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
        
        # Discard keypoints near the image borders
        keypoints, scores = list(zip(*[
            remove_borders(k, s, default_config['remove_borders'], h * 8, w * 8)
            for k, s in zip(keypoints, scores)]))
        
        # Keep the k keypoints with highest score
        if default_config['max_keypoints'] >= 0:
            keypoints, scores = list(zip(*[
                top_k_keypoints(k, s, default_config['max_keypoints'])
                for k, s in zip(keypoints, scores)]))
        
        # Convert (h, w) to (x, y)
        keypoints = [torch.flip(k, [1]).float() for k in keypoints]

        # Compute the dense descriptors
        cDa = self.relu(self.convDa(x))
        descriptors = self.convDb(cDa)
        
        descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)
   
        # Extract descriptors
        descriptors = [sample_descriptors(k[None], d[None], 8)[0]
                       for k, d in zip(keypoints, descriptors)]

        
        return {
            'keypoints': keypoints,
            'scores': scores,
            'descriptors': descriptors,
        }

fettahyildizz avatar Nov 20 '24 12:11 fettahyildizz

@lix19937 I have figured the line seems creating problem is this scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]

fettahyildizz avatar Nov 25 '24 00:11 fettahyildizz

Before you rewrite the code map to foreign node, you can try use onnx-simplifier or polygraphy to optimize your onnx, then use trtexec.

lix19937 avatar Nov 27 '24 11:11 lix19937

Optimizing onnx with onnx-simplifier or polygraph didn't eliminate problematic layers so I rewrite forward() method for pytorch model.

fettahyildizz avatar Nov 29 '24 12:11 fettahyildizz

Flatten should be supported in 8.5. @fettahyildizz Can you update the link to the model so we can further investigate?

poweiw avatar Dec 02 '24 03:12 poweiw

Hi @poweiw , Superpoint ONNX, here I provided the link to the model. I failed to convert on Tensorrt 8.5.3.

This is the model's code:

import torch
from torch import nn

class MaxPool(nn.Module):
    def __init__(self, nms_radius: int):
        super(MaxPool, self).__init__()
        self.block = nn.MaxPool2d(kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)

    def forward(self, x):
        x = x.unsqueeze(dim=1)
        return torch.squeeze(self.block(x), dim=1)


def simple_nms(scores, nms_radius: int):
    """ Fast Non-maximum suppression to remove nearby points """
    assert (nms_radius >= 0)

    # def max_pool(x):
    #     return torch.nn.functional.max_pool2d(
    #         x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)

    max_pool = MaxPool(nms_radius)

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)
    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def remove_borders(keypoints, scores, border: int, height: int, width: int):
    """ Removes keypoints too close to the border """
    mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
    mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
    mask = mask_h & mask_w
    return keypoints[mask], scores[mask]


def top_k_keypoints(keypoints, scores, k: int):
    if k >= len(keypoints):
        return keypoints, scores
    scores, indices = torch.topk(scores, k, dim=0)
    return keypoints[indices], scores


def sample_descriptors(keypoints, descriptors, s: int = 8):
    """ Interpolate descriptors at keypoint locations """
    b, c, h, w = descriptors.shape
    keypoints = keypoints - s / 2 + 0.5
    keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
                              ).to(keypoints)[None]
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {}
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args)
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1)
    descriptors = descriptors.permute(0, 2, 1)
    return descriptors


default_config = {
    'descriptor_dim': 256,
    'nms_radius': 4,
    'keypoint_threshold': 0.0005,
    'max_keypoints': 1024,
    'remove_borders': 4,
}


class SuperPoint(nn.Module):
    """SuperPoint Convolutional Detector and Descriptor

    SuperPoint: Self-Supervised Interest Point Detection and
    Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew
    Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629

    """
    # default_config = {
    #     'descriptor_dim': 256,
    #     'nms_radius': 4,
    #     'keypoint_threshold': 0.005,
    #     'max_keypoints': -1,
    #     'remove_borders': 4,
    # }

    def __init__(self):
        super().__init__()
        # self.config = {**self.default_config, **config}

        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256

        self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
        self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
        self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
        self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
        self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
        self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
        self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
        self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)

        self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
        self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)

        self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
        self.convDb = nn.Conv2d(
            c5, default_config['descriptor_dim'],
            kernel_size=1, stride=1, padding=0)

        # path = Path(__file__).parent / 'weights/superpoint_v1.pth'
        # self.load_state_dict(torch.load(str(path)))

        # mk = default_config['max_keypoints']
        # if mk == 0 or mk < -1:
        #     raise ValueError('\"max_keypoints\" must be positive or \"-1\"')

    def forward(self, data):
        """ Compute keypoints, scores, descriptors for image """
        # Shared Encoder
        x = self.relu(self.conv1a(data))
        x = self.relu(self.conv1b(x))
        x = self.pool(x)
        x = self.relu(self.conv2a(x))
        x = self.relu(self.conv2b(x))
        x = self.pool(x)
        x = self.relu(self.conv3a(x))
        x = self.relu(self.conv3b(x))
        x = self.pool(x)
        x = self.relu(self.conv4a(x))
        x = self.relu(self.conv4b(x))

        # Compute the dense keypoint scores
        cPa = self.relu(self.convPa(x))
        scores = self.convPb(cPa)
        scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
        b, _, h, w = scores.shape
        scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
        scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
        scores = simple_nms(scores, default_config['nms_radius'])

        # Extract keypoints
        keypoints = [
            torch.nonzero(s > default_config['keypoint_threshold'])
            for s in scores]
        scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
        
        # Discard keypoints near the image borders
        keypoints, scores = list(zip(*[
            remove_borders(k, s, default_config['remove_borders'], h * 8, w * 8)
            for k, s in zip(keypoints, scores)]))
        
        # Keep the k keypoints with highest score
        if default_config['max_keypoints'] >= 0:
            keypoints, scores = list(zip(*[
                top_k_keypoints(k, s, default_config['max_keypoints'])
                for k, s in zip(keypoints, scores)]))
        
        # Convert (h, w) to (x, y)
        keypoints = [torch.flip(k, [1]).float() for k in keypoints]

        # Compute the dense descriptors
        cDa = self.relu(self.convDa(x))
        descriptors = self.convDb(cDa)
        
        descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1)
   
        # Extract descriptors
        descriptors = [sample_descriptors(k[None], d[None], 8)[0]
                       for k, d in zip(keypoints, descriptors)]

        
        return {
            'keypoints': keypoints,
            'scores': scores,
            'descriptors': descriptors,
        }

fettahyildizz avatar Dec 02 '24 16:12 fettahyildizz

Hello @poweiw, any update on the issue?

fettahyildizz avatar Dec 05 '24 19:12 fettahyildizz