TensorRT icon indicating copy to clipboard operation
TensorRT copied to clipboard

Jetson Nano : Error TensorRT : Error Code 10: Internal Error (Could not find any implementation for node StatefulPartitionedCall/ArgMax.)

Open AlexandreBourrieau opened this issue 1 year ago • 4 comments

Hello,

After compiling tensorRT 8.4.2 from source, and try to convert my onnx model to TRT model on my jetson nano I got the following error :

Internal Error (Could not find any implementation for node StatefulPartitionedCall/ArgMax.)

Onnx model : https://drive.google.com/file/d/1i56egDoGe-xCTo2Q63yQWFiCdD-gaDt-/view?usp=sharing

NB : I try to use --opset 17 for creationg my onnx model but same problem... NB : I try also --workspace=512 but same problem...

The conversion work great under google colab using the same onnx model.

Can you please help me ?

!/home/jetson/TensorRT/build/trtexec --fp16 --workspace=4096 --onnx="model.onnx" --saveEngine="model_jetson.engine"

[02/24/2024-20:42:37] [W] --workspace flag has been deprecated by --memPoolSize flag.
[02/24/2024-20:42:37] [I] === Model Options ===
[02/24/2024-20:42:37] [I] Format: ONNX
[02/24/2024-20:42:37] [I] Model: model.onnx
[02/24/2024-20:42:37] [I] Output:
[02/24/2024-20:42:37] [I] === Build Options ===
[02/24/2024-20:42:37] [I] Max batch: explicit batch
[02/24/2024-20:42:37] [I] Memory Pools: workspace: 4096 MiB, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[02/24/2024-20:42:37] [I] minTiming: 1
[02/24/2024-20:42:37] [I] avgTiming: 8
[02/24/2024-20:42:37] [I] Precision: FP32+FP16
[02/24/2024-20:42:37] [I] LayerPrecisions: 
[02/24/2024-20:42:37] [I] Calibration: 
[02/24/2024-20:42:37] [I] Refit: Disabled
[02/24/2024-20:42:37] [I] Sparsity: Disabled
[02/24/2024-20:42:37] [I] Safe mode: Disabled
[02/24/2024-20:42:37] [I] DirectIO mode: Disabled
[02/24/2024-20:42:37] [I] Restricted mode: Disabled
[02/24/2024-20:42:37] [I] Build only: Disabled
[02/24/2024-20:42:37] [I] Save engine: model_jetson.engine
[02/24/2024-20:42:37] [I] Load engine: 
[02/24/2024-20:42:37] [I] Profiling verbosity: 0
[02/24/2024-20:42:37] [I] Tactic sources: Using default tactic sources
[02/24/2024-20:42:37] [I] timingCacheMode: local
[02/24/2024-20:42:37] [I] timingCacheFile: 
[02/24/2024-20:42:37] [I] Input(s)s format: fp32:CHW
[02/24/2024-20:42:37] [I] Output(s)s format: fp32:CHW
[02/24/2024-20:42:37] [I] Input build shapes: model
[02/24/2024-20:42:37] [I] Input calibration shapes: model
[02/24/2024-20:42:37] [I] === System Options ===
[02/24/2024-20:42:37] [I] Device: 0
[02/24/2024-20:42:37] [I] DLACore: 
[02/24/2024-20:42:37] [I] Plugins:
[02/24/2024-20:42:37] [I] === Inference Options ===
[02/24/2024-20:42:37] [I] Batch: Explicit
[02/24/2024-20:42:37] [I] Input inference shapes: model
[02/24/2024-20:42:37] [I] Iterations: 10
[02/24/2024-20:42:37] [I] Duration: 3s (+ 200ms warm up)
[02/24/2024-20:42:37] [I] Sleep time: 0ms
[02/24/2024-20:42:37] [I] Idle time: 0ms
[02/24/2024-20:42:37] [I] Streams: 1
[02/24/2024-20:42:37] [I] ExposeDMA: Disabled
[02/24/2024-20:42:37] [I] Data transfers: Enabled
[02/24/2024-20:42:37] [I] Spin-wait: Disabled
[02/24/2024-20:42:37] [I] Multithreading: Disabled
[02/24/2024-20:42:37] [I] CUDA Graph: Disabled
[02/24/2024-20:42:37] [I] Separate profiling: Disabled
[02/24/2024-20:42:37] [I] Time Deserialize: Disabled
[02/24/2024-20:42:37] [I] Time Refit: Disabled
[02/24/2024-20:42:37] [I] Inputs:
[02/24/2024-20:42:37] [I] === Reporting Options ===
[02/24/2024-20:42:37] [I] Verbose: Disabled
[02/24/2024-20:42:37] [I] Averages: 10 inferences
[02/24/2024-20:42:37] [I] Percentile: 99
[02/24/2024-20:42:37] [I] Dump refittable layers:Disabled
[02/24/2024-20:42:37] [I] Dump output: Disabled
[02/24/2024-20:42:37] [I] Profile: Disabled
[02/24/2024-20:42:37] [I] Export timing to JSON file: 
[02/24/2024-20:42:37] [I] Export output to JSON file: 
[02/24/2024-20:42:37] [I] Export profile to JSON file: 
[02/24/2024-20:42:37] [I] 
[02/24/2024-20:42:37] [I] === Device Information ===
[02/24/2024-20:42:37] [I] Selected Device: NVIDIA Tegra X1
[02/24/2024-20:42:37] [I] Compute Capability: 5.3
[02/24/2024-20:42:37] [I] SMs: 1
[02/24/2024-20:42:37] [I] Compute Clock Rate: 0.9216 GHz
[02/24/2024-20:42:37] [I] Device Global Memory: 3963 MiB
[02/24/2024-20:42:37] [I] Shared Memory per SM: 64 KiB
[02/24/2024-20:42:37] [I] Memory Bus Width: 64 bits (ECC disabled)
[02/24/2024-20:42:37] [I] Memory Clock Rate: 0.01275 GHz
[02/24/2024-20:42:37] [I] 
[02/24/2024-20:42:37] [I] TensorRT version: 8.4.2
[02/24/2024-20:42:39] [I] [TRT] [MemUsageChange] Init CUDA: CPU +229, GPU +0, now: CPU 248, GPU 2724 (MiB)
[02/24/2024-20:42:40] [I] [TRT] [MemUsageSnapshot] Begin constructing builder kernel library: CPU 248 MiB, GPU 2724 MiB
[02/24/2024-20:42:40] [I] [TRT] [MemUsageSnapshot] End constructing builder kernel library: CPU 278 MiB, GPU 2754 MiB
[02/24/2024-20:42:40] [I] Start parsing network model
[02/24/2024-20:42:40] [I] [TRT] ----------------------------------------------------------------
[02/24/2024-20:42:40] [I] [TRT] Input filename:   model.onnx
[02/24/2024-20:42:40] [I] [TRT] ONNX IR version:  0.0.8
[02/24/2024-20:42:40] [I] [TRT] Opset version:    15
[02/24/2024-20:42:40] [I] [TRT] Producer name:    tf2onnx
[02/24/2024-20:42:40] [I] [TRT] Producer version: 1.16.1 9538da
[02/24/2024-20:42:40] [I] [TRT] Domain:           
[02/24/2024-20:42:40] [I] [TRT] Model version:    0
[02/24/2024-20:42:40] [I] [TRT] Doc string:       
[02/24/2024-20:42:40] [I] [TRT] ----------------------------------------------------------------
[02/24/2024-20:42:40] [W] [TRT] parsers/onnx/onnx2trt_utils.cpp:369: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[02/24/2024-20:42:40] [W] [TRT] Tensor DataType is determined at build time for tensors not marked as input or output.
[02/24/2024-20:42:40] [W] [TRT] Tensor DataType is determined at build time for tensors not marked as input or output.
[02/24/2024-20:42:40] [I] Finish parsing network model
[02/24/2024-20:42:40] [I] [TRT] ---------- Layers Running on DLA ----------
[02/24/2024-20:42:40] [I] [TRT] ---------- Layers Running on GPU ----------
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/Cast
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/Reshape:0
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/truediv:0
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] PWN(StatefulPartitionedCall/sub_1/y:0 + (Unnamed Layer* 7) [Shuffle], PWN(PWN(StatefulPartitionedCall/sub, StatefulPartitionedCall/truediv_1), StatefulPartitionedCall/sub_1))
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/Conv1/Conv2D__15
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/Conv1/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/Conv1_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/expanded_conv_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/expanded_conv_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/expanded_conv_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_1_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_1_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_1_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_1_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_1_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_2_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_2_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_2_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_2_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_2_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_2_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_3_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_3_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_3_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_3_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_3_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_4_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_4_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_4_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_4_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_4_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_4_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_5_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_5_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_5_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_5_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_5_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_5_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_6_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_6_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_6_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_6_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_6_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_7_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_7_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_7_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_7_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_7_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_7_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_8_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_8_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_8_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_8_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_8_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_8_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_9_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_9_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_9_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_9_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_9_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_9_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_10_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_10_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_10_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_10_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_10_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_11_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_11_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_11_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_11_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_11_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_11_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_12_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_12_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_12_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_12_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_12_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_12_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_13_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_13_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_13_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_13_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_13_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_14_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_14_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_14_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_14_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_14_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_14_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_15_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_15_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_15_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_15_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_15_project/Conv2D + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_15_add/add
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_16_expand/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_16_expand_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_16_depthwise/depthwise + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_16_depthwise_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/block_16_project/Conv2D
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/Conv_1/Conv2D + PWN(StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/model/out_relu/Relu6)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/conv2d/BiasAdd
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] Resize__349
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/conv2d_1/BiasAdd + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/tf.__operators__.add/AddV2
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/separable_conv2d/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/separable_conv2d/BiasAdd + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/batch_normalization/FusedBatchNormV3 + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/re_lu/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] Resize__364
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/conv2d_2/BiasAdd + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/tf.__operators__.add_1/AddV2
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/separable_conv2d_1/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/separable_conv2d_1/BiasAdd + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/batch_normalization_1/FusedBatchNormV3 + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/re_lu_1/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] Resize__379
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/conv2d_3/BiasAdd + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/tf.__operators__.add_2/AddV2
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/separable_conv2d_2/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/separable_conv2d_2/BiasAdd + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/batch_normalization_2/FusedBatchNormV3 + StatefulPartitionedCall/center_net_mobile_net_v2fpn_feature_extractor/model_1/re_lu_2/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_0/separable_conv2d_3/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_0/separable_conv2d_3/BiasAdd + StatefulPartitionedCall/center_0/re_lu_3/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_heatmap_0/separable_conv2d_4/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_heatmap_0/separable_conv2d_4/BiasAdd + StatefulPartitionedCall/kpt_heatmap_0/re_lu_4/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_regress_0/separable_conv2d_5/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_regress_0/separable_conv2d_5/BiasAdd + StatefulPartitionedCall/kpt_regress_0/re_lu_5/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_regress_0/conv2d_6/BiasAdd
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_heatmap_0/conv2d_5/BiasAdd
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_0/conv2d_4/BiasAdd
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] PWN(StatefulPartitionedCall/Sigmoid_1)
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/center_0/conv2d_4/BiasAdd__426
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] ConstantFolding/StatefulPartitionedCall/truediv_2_recip:0 + (Unnamed Layer* 152) [Shuffle] + StatefulPartitionedCall/truediv_2
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/Reshape_2
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/ArgMax
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] {ForeignNode[StatefulPartitionedCall/kpt_regress_0/conv2d_6/BiasAdd__399...StatefulPartitionedCall/Reshape_7]}
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_offset_0/separable_conv2d_6/separable_conv2d/depthwise
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_offset_0/separable_conv2d_6/BiasAdd + StatefulPartitionedCall/kpt_offset_0/re_lu_6/Relu
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/kpt_offset_0/conv2d_7/BiasAdd
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] StatefulPartitionedCall/ArgMax_1
[02/24/2024-20:42:40] [I] [TRT] [GpuLayer] {ForeignNode[(Unnamed Layer* 203) [Shuffle]...StatefulPartitionedCall/concat_1]}
[02/24/2024-20:42:41] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +158, GPU +160, now: CPU 458, GPU 2936 (MiB)
[02/24/2024-20:42:43] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +241, GPU +239, now: CPU 699, GPU 3175 (MiB)
[02/24/2024-20:42:43] [I] [TRT] Local timing cache in use. Profiling results in this builder pass will not be stored.
[02/24/2024-20:43:57] [I] [TRT] Some tactics do not have sufficient workspace memory to run. Increasing workspace size may increase performance, please check verbose output.
[02/24/2024-20:46:59] [E] Error[10]: [optimizer.cpp::computeCosts::2011] Error Code 10: Internal Error (Could not find any implementation for node StatefulPartitionedCall/ArgMax.)
[02/24/2024-20:46:59] [E] Error[2]: [builder.cpp::buildSerializedNetwork::609] Error Code 2: Internal Error (Assertion enginePtr != nullptr failed. )
[02/24/2024-20:46:59] [E] Engine could not be created from network
[02/24/2024-20:46:59] [E] Building engine failed
[02/24/2024-20:46:59] [E] Failed to create engine from model or file.
[02/24/2024-20:46:59] [E] Engine set up failed
&&&& FAILED TensorRT.trtexec [TensorRT v8402] # /home/jetson/TensorRT/build/trtexec --fp16 --workspace=4096 --onnx=model.onnx --saveEngine=model_jetson.engine

type or paste code here

AlexandreBourrieau avatar Feb 24 '24 20:02 AlexandreBourrieau

I just realized that under colab it is version 8.6 while under jetson it is 8.4... I'll try to recompile 8.6 under Jetson to see if that solves the problem...

AlexandreBourrieau avatar Feb 24 '24 21:02 AlexandreBourrieau

I am unable to compile trt8.5 on my jetson.

Please can someone explain me if the error is due to the fact that Argmax is not supported ?? I thought it was the case no ??

Did someone have an idea to fix this issue ? Do I need for example write my own pluggin to implement argmax and use surgeon to replace the Argmax by my own layer ?

Can someone give me some advice so I can do my own research ?

Thanks you.

AlexandreBourrieau avatar Feb 28 '24 12:02 AlexandreBourrieau

How about just flash the JP to latest 6.x version, it should have 8.6 shipped. AFAIK we don't support install CUDA-X SDKs manually in Jetson. You need to upgrade the JP version.

zerollzeng avatar Mar 01 '24 06:03 zerollzeng

Jetpack max version is 4.6.3 on Jetson nano I cannot use JP6 even using sdk ...

Do you think my idea to create my own plugin for argmax should work ? Is it really argmax which is not supported ? Thanks !

AlexandreBourrieau avatar Mar 01 '24 07:03 AlexandreBourrieau

You can check our release note(or onnx-tensorrt operator and checkout the 8.4 branch), I think it should be supported in 8.4.

Yes you can implement it as a plugin if you can upgrade the JP.

zerollzeng avatar Mar 04 '24 13:03 zerollzeng

Thanks you !

AlexandreBourrieau avatar Mar 04 '24 19:03 AlexandreBourrieau