NeMo
NeMo copied to clipboard
Context parallel does not work in some cases which works well using megatron-lm directly
Describe the bug
Context parallel does not work in some cases, such as pretrain llama-34b with 64 A800 GPUs and seqlen>=32768. But using megatron-lm directly has no problem with the same config. I want to use the SFT support like sequence packing in Nemo, hope to solve this soon.
Environment details
- image: nvcr.io/nvidia/nemo:24.03.01.framework
- 32 x A800
test cases
error msg details
- kernel assertion
ATen/native/cuda/IndexKernel.cu:92: operator(): block: [3,0,0], thread: [64,0,0] Assertion `-sizes[i] <= index && index < sizes[i] && "index out of bounds"` failed.
/opt/pytorch/pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:92: operator(): block: [3,0,0], thread: [65,0,0] Assertion `-sizes[i] <= index && index < sizes[i] && "index out of bounds"` failed.
2.nccl timeout (tp=2, pp=4, cp=8)
terminate called after throwing an instance of 'c10::DistBackendError'
what(): [PG 5 Rank 1] NCCL watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=910, OpType=_ALLGATHER_BASE, NumelIn=16777216, NumelOut=33554432, Timeout(ms)=600000) ran for 600021 milliseconds before timing out.
3.nccl timeout (tp=8, pp=1, cp=8)
[rank7]:[E ProcessGroupNCCL.cpp:574] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=2, OpType=COALESCED, NumelIn=18446744073709551615, NumelOut=18446744073709551615, Timeout(ms)=600000) ran for 600014 milliseconds before timing out.
[rank7]:[E ProcessGroupNCCL.cpp:574] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=21161, OpType=SEND, NumelIn=2097152, NumelOut=2097152, Timeout(ms)=600000) ran for 600022 milliseconds before timing out.
[rank7]:[E ProcessGroupNCCL.cpp:574] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=15334, OpType=_ALLGATHER_BASE, NumelIn=8388608, NumelOut=67108864, Timeout(ms)=600000) ran for 600079 milliseconds before timing out.
pretrain_llama34b_config.yaml
name: megatron_llama_34b
trainer:
devices: 8
num_nodes: 4
accelerator: gpu
precision: bf16
logger: False # logger provided by exp_manager
enable_checkpointing: False
use_distributed_sampler: False
max_epochs: -1 # PTL default. In practice, max_steps will be reached first.
max_steps: 10 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 1
val_check_interval: 10
limit_val_batches: 1
limit_test_batches: 1
accumulate_grad_batches: 1 # do not modify, grad acc is automatic for training megatron models
gradient_clip_val: 1.0
benchmark: False
enable_model_summary: False # default PTL callback for this does not support model parallelism, instead we log manually
num_sanity_val_steps: 0
exp_manager:
explicit_log_dir: null
exp_dir: null
name: megatron_llama_34b
create_wandb_logger: False
wandb_logger_kwargs:
project: null
name: null
resume_if_exists: True
resume_ignore_no_checkpoint: True
create_checkpoint_callback: False
checkpoint_callback_params:
monitor: val_loss
save_top_k: 1
mode: min
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
save_nemo_on_train_end: False # not recommended when training large models on clusters with short time limits
filename: megatron_gpt--{val_loss:.2f}-{step}-{consumed_samples}
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}
save_last: false
model:
mcore_gpt: True
# specify micro_batch_size, global_batch_size, and model parallelism
# gradient accumulation will be done automatically based on data_parallel_size
micro_batch_size: 1 # limited by GPU memory
global_batch_size: 1 # will use more micro batches to reach global batch size
tensor_model_parallel_size: 8 # intra-layer model parallelism
pipeline_model_parallel_size: 1 # inter-layer model parallelism
context_parallel_size: 4
virtual_pipeline_model_parallel_size: null # interleaved pipeline
use_flash_attention: True
encoder_seq_length: 32768
max_position_embeddings: ${.encoder_seq_length}
num_layers: 48 # 7b: 32 | 13b: 40 | 70b: 80
hidden_size: 8192 # 7b: 4096 | 13b: 5120 | 70b: 8192
ffn_hidden_size: 22016 # Transformer FFN hidden size. Usually 4 * hidden_size. | 7b: 11008 | 13b: 13824 | 70b: 28672
num_attention_heads: 64 # 7b: 32 | 13b: 40 | 70b: 64
use_scaled_init_method: True # use scaled residuals initialization
hidden_dropout: 0.0 # Dropout probability for hidden state transformer.
attention_dropout: 0.0 # Dropout probability for attention
ffn_dropout: 0.0 # Dropout probability in the feed-forward layer.
kv_channels: null # Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if null
normalization: 'rmsnorm' # Normalization layer to use. Options are 'layernorm', 'rmsnorm'
layernorm_epsilon: 1e-5
do_layer_norm_weight_decay: False # True means weight decay on all params
make_vocab_size_divisible_by: 256 # Pad the vocab size to be divisible by this value for computation efficiency.
pre_process: True # add embedding
post_process: True # add pooler
persist_layer_norm: True # Use of persistent fused layer norm kernel.
bias: False # Whether to use bias terms in all weight matrices.
activation: 'fast-swiglu' # Options ['gelu', 'geglu', 'swiglu', 'reglu', 'squared-relu', 'fast-geglu', 'fast-swiglu', 'fast-reglu']
headscale: False # Whether to learn extra parameters that scale the output of the each self-attention head.
transformer_block_type: 'pre_ln' # Options ['pre_ln', 'post_ln', 'normformer']
openai_gelu: False # Use OpenAI's GELU instead of the default GeLU
normalize_attention_scores: True # Whether to scale the output Q * K^T by 1 / sqrt(hidden_size_per_head). This arg is provided as a configuration option mostly for compatibility with models that have been weight-converted from HF. You almost always want to se this to True.
attention_type: 'multihead' # Attention type. Options ['multihead']
share_embeddings_and_output_weights: False # Share embedding and output layer weights.
overlap_p2p_comm: False # Overlap p2p communication with computes. This argument is valid only when `virtual_pipeline_model_parallel_size` is larger than 1
batch_p2p_comm: True # Batch consecutive inter-peer send/recv operations. This argument is valid only when `virtual_pipeline_model_parallel_size` is larger than 1
num_query_groups: 8 # Number of query groups for group query attention. If None, normal attention is used. | 7b: 32 | 13b: 40 | 70b: 8
position_embedding_type: 'rope' # Position embedding type. Options ['learned_absolute', 'rope']
rotary_percentage: 1.0 # If using position_embedding_type=rope, then the per head dim is multiplied by this.
init_method_std: 0.02 # Standard deviation of the zero mean normal distribution used for weight initialization.')
apply_query_key_layer_scaling: True # scale Q * K^T by 1 / layer-number.
tokenizer:
library: 'sentencepiece'
type: null
model: /workspace/Models/Original/CodeLlama-34b-hf/tokenizer.model
vocab_file: null
merge_file: null
delimiter: null # only used for tabular tokenizer
sentencepiece_legacy: False # Legacy=True allows you to add special tokens to sentencepiece tokenizers.
# Mixed precision
# native_amp_init_scale: 4294967296 # 2 ** 32
# native_amp_growth_interval: 1000
# hysteresis: 2 # Gradient scale hysteresis
# fp32_residual_connection: False # Move residual connections to fp32
# fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16
# Megatron O2-style half-precision
megatron_amp_O2: True # Enable O2-level automatic mixed precision using main parameters
grad_allreduce_chunk_size_mb: 125
# Fusion
grad_div_ar_fusion: True # Fuse grad division into torch.distributed.all_reduce. Only used with O2 and no pipeline parallelism..
gradient_accumulation_fusion: True # Fuse weight gradient accumulation to GEMMs. Only used with pipeline parallelism and O2.
bias_activation_fusion: False # Use a kernel that fuses the bias addition from weight matrices with the subsequent activation function.
bias_dropout_add_fusion: False # Use a kernel that fuses the bias addition, dropout and residual connection addition.
masked_softmax_fusion: False # Use a kernel that fuses the attention softmax with it's mask.
get_attention_mask_from_fusion: True # When using fused softmax it will create the attention mask so we won't copy it to the pipeline stages.
apply_rope_fusion: True # Use a kernel to add rotary positional embeddings. Only used if position_embedding_type=rope
# Miscellaneous
seed: 1234
resume_from_checkpoint: null # manually set the checkpoint file to load from
use_cpu_initialization: False # Init weights on the CPU (slow for large models)
onnx_safe: False # Use work-arounds for known problems with Torch ONNX exporter.
apex_transformer_log_level: 30 # Python logging level displays logs with severity greater than or equal to this
gradient_as_bucket_view: True # PyTorch DDP argument. Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
sync_batch_comm: False # Enable stream synchronization after each p2p communication between pipeline stages
## Activation Checkpointing
activations_checkpoint_granularity: null # 'selective' or 'full'
activations_checkpoint_method: null # 'uniform', 'block'
activations_checkpoint_num_layers: null
num_micro_batches_with_partial_activation_checkpoints: null
activations_checkpoint_layers_per_pipeline: null
sequence_parallel: True
## Transformer Engine
transformer_engine: True
fp8: False # enables fp8 in TransformerLayer forward
fp8_e4m3: False # sets fp8_format = recipe.Format.E4M3
fp8_hybrid: True # sets fp8_format = recipe.Format.HYBRID
fp8_margin: 0 # scaling margin
fp8_interval: 1 # scaling update interval
fp8_amax_history_len: 1024 # Number of steps for which amax history is recorded per tensor
fp8_amax_compute_algo: max # 'most_recent' or 'max'. Algorithm for computing amax from history
reduce_amax: True # Perform reduction to sync amax tensors across GPUs after every iteration
use_emha: False # Use fused multi-head attention for large sequence-length. Note this is not yet supported. Please set to False.
data:
data_prefix:
- 1.0
- /workspace/Jianzhou/Datasets/Nemo/pretrain/EVAL_C4_text_document
index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix
data_impl: mock
splits_string: 900,50,50
seq_length: ${model.encoder_seq_length}
skip_warmup: True
num_workers: 0
dataloader_type: single # cyclic
reset_position_ids: False # Reset position ids after end-of-document token
reset_attention_mask: False # Reset attention mask after end-of-document token
eod_mask_loss: False # Mask loss for the end of document tokens
validation_drop_last: True # Set to false if the last partial validation samples is to be consumed
no_seqlen_plus_one_input_tokens: False # Set to True to disable fetching (sequence length + 1) input tokens, instead get (sequence length) input tokens and mask the last token
pad_samples_to_global_batch_size: False # Set to True if you want to pad the last partial batch with -1's to equal global batch size
shuffle_documents: True # Set to False to disable documents shuffling. Sample index will still be shuffled
# Nsys profiling options
nsys_profile:
enabled: False
start_step: 5 # Global batch to start profiling
end_step: 6 # Global batch to end profiling
ranks: [0] # Global rank IDs to profile
gen_shape: False # Generate model and kernel details including input shapes
optim:
name: distributed_fused_adam
# overlap_grad_sync: True
# overlap_param_sync: True
# contiguous_grad_buffer: True
lr: 2e-4
weight_decay: 0.01
betas:
- 0.9
- 0.98
sched:
name: CosineAnnealing
warmup_steps: 500
constant_steps: 50000
min_lr: 2e-5