DeepLearningExamples icon indicating copy to clipboard operation
DeepLearningExamples copied to clipboard

nvidia driver/cuda problem

Open lllmx-GH opened this issue 8 months ago • 0 comments

A suspected nvidia driver bug. I’m using python’s subprocess library to run the following command once per second:. [‘nvidia-smi’, ‘–query-gpu=memory.used’, ‘–format=csv,noheader,nounits’] Full script: import subprocess import time log_file_path = “logs/gpu_log.log” utilization_result = subprocess.run( [‘nvidia-smi’, ‘–query-gpu=utilization.gpu’, ‘–format=csv,noheader,nounits’], capture_output=True, text=True, check=True) gpu_utilization = utilization_result.stdout.strip()

memory_result = subprocess.run( [‘nvidia-smi’, ‘–query-gpu=memory.used’, ‘–format=csv,noheader,nounits’], capture_output=True, text=True, check=True) gpu_memory_used = memory_result.stdout.strip()

current_time = time.strftime(“%Y-%m-%d %H:%M:%S”) log_entry = f"{current_time}: GPU Utilization: {gpu_utilization}%, GPU Memory Used: {gpu_memory_used} MiB\n" with open(log_file_path, ‘a’, encoding=‘utf-8’) as log_file: log_file.write(log_entry) print(log_entry.strip())

Encountered an unexpected problem when using model inference for an extended period of time, causing the graphics card call to fail: Image

In the meantime, the python model inference script errors out: 2025-04-09 08:58:51.810 | ERROR | pkg.analyze.model:get_screen_status:179 - 图标状态判别模型出错: CUDA error: unknown error Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.

2025-04-09 08:58:52.151 | ERROR | pkg.analyze.model:get_screen_status:180 - Traceback: Traceback (most recent call last): File “ultralytics\engine\predictor.py”, line 259, in stream_inference preds = self.inference(im, *args, **kwargs) File “ultralytics\engine\predictor.py”, line 143, in inference return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs) File “torch\nn\modules\module.py”, line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File “torch\nn\modules\module.py”, line 1541, in _call_impl return forward_call(*args, **kwargs) File “ultralytics\nn\autobackend.py”, line 524, in forward y = self.model(im, augment=augment, visualize=visualize, embed=embed) File “torch\nn\modules\module.py”, line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File “torch\nn\modules\module.py”, line 1541, in _call_impl return forward_call(*args, **kwargs) File “ultralytics\nn\tasks.py”, line 114, in forward return self.predict(x, *args, **kwargs) File “ultralytics\nn\tasks.py”, line 132, in predict return self._predict_once(x, profile, visualize, embed) File “ultralytics\nn\tasks.py”, line 153, in _predict_once x = m(x) # run File “torch\nn\modules\module.py”, line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File “torch\nn\modules\module.py”, line 1541, in _call_impl return forward_call(*args, **kwargs) File “ultralytics\nn\modules\block.py”, line 239, in forward y.extend(m(y[-1]) for m in self.m) File “ultralytics\nn\modules\block.py”, line 239, in y.extend(m(y[-1]) for m in self.m) File “torch\nn\modules\module.py”, line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File “torch\nn\modules\module.py”, line 1541, in _call_impl return forward_call(*args, **kwargs) File “ultralytics\nn\modules\block.py”, line 348, in forward return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) File “torch\nn\modules\module.py”, line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File “torch\nn\modules\module.py”, line 1541, in _call_impl return forward_call(*args, **kwargs) File “ultralytics\nn\modules\conv.py”, line 55, in forward_fuse return self.act(self.conv(x)) File “torch\nn\modules\module.py”, line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File “torch\nn\modules\module.py”, line 1541, in _call_impl return forward_call(*args, **kwargs) File “torch\nn\modules\conv.py”, line 460, in forward return self._conv_forward(input, self.weight, self.bias) File “torch\nn\modules\conv.py”, line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File “pkg\analyze\model.py”, line 175, in get_screen_status File “ultralytics\engine\model.py”, line 180, in call return self.predict(source, stream, **kwargs) File “ultralytics\engine\model.py”, line 558, in predict return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) File “ultralytics\engine\predictor.py”, line 173, in call return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one File “torch\utils_contextlib.py”, line 35, in generator_context response = gen.send(None) File “ultralytics\engine\predictor.py”, line 258, in stream_inference with profilers[1]: File “ultralytics\utils\ops.py”, line 51, in exit self.dt = self.time() - self.start # delta-time File “ultralytics\utils\ops.py”, line 61, in time torch.cuda.synchronize(self.device) File “torch\cuda_init_.py”, line 792, in synchronize return torch._C._cuda_synchronize() RuntimeError: CUDA error: unknown error Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.

Running environment: Windows 11 Nvidia Driver Version 572.80 Cuda Tookit 12.6

lllmx-GH avatar Apr 15 '25 01:04 lllmx-GH