decoders.video CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND (302):
Describe the question.
Hi! I have nvidia-dali pipeline where i try to decode video on GPU.
I have nvidia-dali-cuda120==1.51.2
My pipeline looks next way
import nvidia.dali.fn as fn
import nvidia.dali.types as types
from nvidia.dali.plugin.triton import autoserialize
import os
from nvidia.dali import pipeline_def
OUTPUT_DIR = os.path.dirname(os.path.abspath(__file__))
@pipeline_def(batch_size=1, num_threads=2, device_id=0)
def video_decode_pipeline():
video_data = fn.external_source(name="DALI_INPUT_0", device="cpu", dtype=types.UINT8)
frames = fn.experimental.decoders.video(video_data, device="mixed")
return frames
if __name__ == "__main__":
pipe = video_decode_pipeline(device_id=0)
output_fn = os.path.join(OUTPUT_DIR, "model.dali")
pipe.serialize(filename=output_fn)
With config.pbtxt
name: "keyframes_dali"
backend: "dali"
max_batch_size: 1
input [
{
name: "DALI_INPUT_0"
data_type: TYPE_UINT8
dims: [ -1 ]
}
]
output [
{
name: "DALI_OUTPUT_0"
data_type: TYPE_UINT8
dims: [ -1, -1, 3 ]
}
]
instance_group [
{
kind: KIND_GPU
count: 1
}
]
It successfully loaded to Triton Inference Server but when i try to infer model with bytes of video file i get next error
InferenceServerException: [StatusCode.UNKNOWN] Runtime error: Critical error in pipeline:
Error when executing Mixed operator experimental__decoders__Video encountered:
Error in thread 0: CUDA driver API error CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND (302):
shared object symbol not found
Current pipeline object is no longer valid.
I tried to look for this error but had no success in it. Can you help me what should i check?
Check for duplicates
- [x] I have searched the open bugs/issues and have found no duplicates for this bug report
Hi @Voveka98,
Thank you for reaching out. It appears there may be a mismatch between your CUDA installation and the DALI version.
Could you please share a minimal, complete set of reproduction steps that we can run on our side? You can use sample data from DALI_extra if needed.
Hi @JanuszL! Thanks for answering Inside my Triton Inference Server docker i have next output from nvidia-smi
triton@jupyter-user:~$ nvidia-smi
Wed Dec 10 05:54:57 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.172.08 Driver Version: 570.172.08 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H100 80GB HBM3 Off | 00000000:9B:00.0 Off | 0 |
| N/A 34C P0 120W / 700W | 591MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
+-----------------------------------------------------------------------------------------+
For nvidia dali i got wheel from this index https://pypi.nvidia.com/nvidia-dali-cuda120/ with version nvidia_dali_cuda120-1.51.2-py3-none-manylinux2014_x86_64.wh
Also in TIS docker i dont have ffmpeg, is it required?
Hi @Voveka98,
Thank you for your response.
Unfortunately, the steps you've provided don’t give me enough information to reproduce the DALI error on my end.
Regarding your note:
For nvidia dali I got the wheel from this index https://pypi.nvidia.com/nvidia-dali-cuda120/ with version nvidia_dali_cuda120-1.51.2-py3-none-manylinux2014_x86_64.whl
Please note that the DALI Triton backend inside the container is compiled for a specific DALI version, so using a different wheel may cause compatibility issues.
Could you please provide a detailed, step-by-step guide that I can follow to reproduce the error? This will help us investigate the issue more effectively.