rapids-single-cell-examples
rapids-single-cell-examples copied to clipboard
Nearest neighbors graph computation crashes
Hi,
I am trying the hlca_lung_gpu notebook with my own data to test the dimensionality reduction on GPU. The notebook is running well (data loading, pca...) until the nearest neighbors computation
Here is the traceback:
sc.pp.neighbors(adata, n_neighbors=n_neighbors, n_pcs=knn_n_pcs, method='rapids')
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/errors.py in new_error_context(fmt_, *args, **kwargs)
743 try:
--> 744 yield
745 except NumbaError as e:
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in lower_block(self, block)
229 loc=self.loc, errcls_=defaulterrcls):
--> 230 self.lower_inst(inst)
231 self.post_block(block)
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in lower_inst(self, inst)
327 val = self.lower_assign(ty, inst)
--> 328 self.storevar(val, inst.target.name)
329
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in storevar(self, value, name)
1277 name=name)
-> 1278 raise AssertionError(msg)
1279
AssertionError: Storing i64 to ptr of i32 ('dim'). FE type int32
During handling of the above exception, another exception occurred:
LoweringError Traceback (most recent call last)
<timed eval> in <module>
~/miniconda3/envs/rapids/lib/python3.7/site-packages/scanpy/neighbors/__init__.py in neighbors(adata, n_neighbors, n_pcs, use_rep, knn, random_state, method, metric, metric_kwds, key_added, copy)
120 n_neighbors=n_neighbors, knn=knn, n_pcs=n_pcs, use_rep=use_rep,
121 method=method, metric=metric, metric_kwds=metric_kwds,
--> 122 random_state=random_state,
123 )
124
~/miniconda3/envs/rapids/lib/python3.7/site-packages/scanpy/neighbors/__init__.py in compute_neighbors(self, n_neighbors, knn, n_pcs, use_rep, method, random_state, write_knn_indices, metric, metric_kwds)
744 knn_distances,
745 self._adata.shape[0],
--> 746 self.n_neighbors,
747 )
748 # overwrite the umap connectivities if method is 'gauss'
~/miniconda3/envs/rapids/lib/python3.7/site-packages/scanpy/neighbors/__init__.py in _compute_connectivities_umap(knn_indices, knn_dists, n_obs, n_neighbors, set_op_mix_ratio, local_connectivity)
345 fuzzy simplicial sets into a global one via a fuzzy union.
346 """
--> 347 from umap.umap_ import fuzzy_simplicial_set
348
349 X = coo_matrix(([], ([], [])), shape=(n_obs, 1))
~/miniconda3/envs/rapids/lib/python3.7/site-packages/umap/__init__.py in <module>
----> 1 from .umap_ import UMAP
2
3 # Workaround: https://github.com/numba/numba/issues/3341
4 import numba
5
~/miniconda3/envs/rapids/lib/python3.7/site-packages/umap/umap_.py in <module>
52 from umap.spectral import spectral_layout
53 from umap.utils import deheap_sort, submatrix
---> 54 from umap.layouts import (
55 optimize_layout_euclidean,
56 optimize_layout_generic,
~/miniconda3/envs/rapids/lib/python3.7/site-packages/umap/layouts.py in <module>
34 "result": numba.types.float32,
35 "diff": numba.types.float32,
---> 36 "dim": numba.types.int32,
37 },
38 )
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/decorators.py in wrapper(func)
219 with typeinfer.register_dispatcher(disp):
220 for sig in sigs:
--> 221 disp.compile(sig)
222 disp.disable_compile()
223 return disp
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/dispatcher.py in compile(self, sig)
907 with ev.trigger_event("numba:compile", data=ev_details):
908 try:
--> 909 cres = self._compiler.compile(args, return_type)
910 except errors.ForceLiteralArg as e:
911 def folded(args, kws):
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/dispatcher.py in compile(self, args, return_type)
77
78 def compile(self, args, return_type):
---> 79 status, retval = self._compile_cached(args, return_type)
80 if status:
81 return retval
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/dispatcher.py in _compile_cached(self, args, return_type)
91
92 try:
---> 93 retval = self._compile_core(args, return_type)
94 except errors.TypingError as e:
95 self._failed_cache[key] = e
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/dispatcher.py in _compile_core(self, args, return_type)
109 args=args, return_type=return_type,
110 flags=flags, locals=self.locals,
--> 111 pipeline_class=self.pipeline_class)
112 # Check typing error if object mode is used
113 if cres.typing_error is not None and not flags.enable_pyobject:
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler.py in compile_extra(typingctx, targetctx, func, args, return_type, flags, locals, library, pipeline_class)
604 pipeline = pipeline_class(typingctx, targetctx, library,
605 args, return_type, flags, locals)
--> 606 return pipeline.compile_extra(func)
607
608
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler.py in compile_extra(self, func)
351 self.state.lifted = ()
352 self.state.lifted_from = None
--> 353 return self._compile_bytecode()
354
355 def compile_ir(self, func_ir, lifted=(), lifted_from=None):
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler.py in _compile_bytecode(self)
413 """
414 assert self.state.func_ir is None
--> 415 return self._compile_core()
416
417 def _compile_ir(self):
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler.py in _compile_core(self)
393 self.state.status.fail_reason = e
394 if is_final_pipeline:
--> 395 raise e
396 else:
397 raise CompilerError("All available pipelines exhausted")
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler.py in _compile_core(self)
384 res = None
385 try:
--> 386 pm.run(self.state)
387 if self.state.cr is not None:
388 break
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler_machinery.py in run(self, state)
337 (self.pipeline_name, pass_desc)
338 patched_exception = self._patch_error(msg, e)
--> 339 raise patched_exception
340
341 def dependency_analysis(self):
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler_machinery.py in run(self, state)
328 pass_inst = _pass_registry.get(pss).pass_inst
329 if isinstance(pass_inst, CompilerPass):
--> 330 self._runPass(idx, pass_inst, state)
331 else:
332 raise BaseException("Legacy pass in use")
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler_lock.py in _acquire_compile_lock(*args, **kwargs)
33 def _acquire_compile_lock(*args, **kwargs):
34 with self:
---> 35 return func(*args, **kwargs)
36 return _acquire_compile_lock
37
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler_machinery.py in _runPass(self, index, pss, internal_state)
287 mutated |= check(pss.run_initialization, internal_state)
288 with SimpleTimer() as pass_time:
--> 289 mutated |= check(pss.run_pass, internal_state)
290 with SimpleTimer() as finalize_time:
291 mutated |= check(pss.run_finalizer, internal_state)
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/compiler_machinery.py in check(func, compiler_state)
260
261 def check(func, compiler_state):
--> 262 mangled = func(compiler_state)
263 if mangled not in (True, False):
264 msg = ("CompilerPass implementations should return True/False. "
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/typed_passes.py in run_pass(self, state)
461
462 # TODO: Pull this out into the pipeline
--> 463 NativeLowering().run_pass(state)
464 lowered = state['cr']
465 signature = typing.signature(state.return_type, *state.args)
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/typed_passes.py in run_pass(self, state)
382 lower = lowering.Lower(targetctx, library, fndesc, interp,
383 metadata=metadata)
--> 384 lower.lower()
385 if not flags.no_cpython_wrapper:
386 lower.create_cpython_wrapper(flags.release_gil)
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in lower(self)
134 if self.generator_info is None:
135 self.genlower = None
--> 136 self.lower_normal_function(self.fndesc)
137 else:
138 self.genlower = self.GeneratorLower(self)
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in lower_normal_function(self, fndesc)
188 # Init argument values
189 self.extract_function_arguments()
--> 190 entry_block_tail = self.lower_function_body()
191
192 # Close tail of entry block
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in lower_function_body(self)
214 bb = self.blkmap[offset]
215 self.builder.position_at_end(bb)
--> 216 self.lower_block(block)
217 self.post_lower()
218 return entry_block_tail
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/lowering.py in lower_block(self, block)
228 with new_error_context('lowering "{inst}" at {loc}', inst=inst,
229 loc=self.loc, errcls_=defaulterrcls):
--> 230 self.lower_inst(inst)
231 self.post_block(block)
232
~/miniconda3/envs/rapids/lib/python3.7/contextlib.py in __exit__(self, type, value, traceback)
128 value = type()
129 try:
--> 130 self.gen.throw(type, value, traceback)
131 except StopIteration as exc:
132 # Suppress StopIteration *unless* it's the same exception that
~/miniconda3/envs/rapids/lib/python3.7/site-packages/numba/core/errors.py in new_error_context(fmt_, *args, **kwargs)
749 newerr = errcls(e).add_context(_format_msg(fmt_, args, kwargs))
750 tb = sys.exc_info()[2] if numba.core.config.FULL_TRACEBACKS else None
--> 751 raise newerr.with_traceback(tb)
752
753
LoweringError: Failed in nopython mode pipeline (step: nopython mode backend)
Storing i64 to ptr of i32 ('dim'). FE type int32
File "../../../../../home/egilson/miniconda3/envs/rapids/lib/python3.7/site-packages/umap/layouts.py", line 52:
def rdist(x, y):
<source elided>
result = 0.0
dim = x.shape[0]
^
During: lowering "dim = static_getitem(value=$8load_attr.2, index=0, index_var=$const10.3, fn=<built-in function getitem>)" at /home/egilson/miniconda3/envs/rapids/lib/python3.7/site-packages/umap/layouts.py (52)
Hi, I had the same issue when using the default hlc data set.
i googled a bit found a solution that worked for me, not sure if its a solution or just a work around but might be helpful to others so here it goes.
The issue seems to be with the numba==0.53.1 and downgrading to numba==0.52 has fixed the issue for me.
pip uninstall numba
pip install numba==0.52.0
Downgrading numba can through some errors so i followed instructions as discussed here "https://github.com/NVIDIA/NeMo/issues/841"
simply run
pip install llvmlite --ignore-installed
pip install numba==0.52.0 --ignore-installed
you might see some errors/warnings but i restarted the kernel in jupyter lab and the whoel workflow worked like a charm and was very quick on NVIDIA 3090.
awesome work guys.
Thank you
Best regards Monib