torch2trt
torch2trt copied to clipboard
Inconsistent inference results between PyTorch and converted TensorRT model using with LogSoftmax operator
Description:
I'm experiencing a discrepancy between the inference results of PyTorch model and the TensorRT model obtained by converting it using the torch2trt tool.
Reproduce
This issue can be reproduced by the following script:
import torch
from torch.nn import Module
from torch2trt import torch2trt
model = torch.nn.LogSoftmax(1,).eval().cuda()
input_data = torch.randn([10, 20], dtype=torch.float32).cuda()
model_trt = torch2trt(model, [input_data])
output = model(input_data)
output_trt = model_trt(input_data)
print(torch.max(torch.abs(output - output_trt)))
The output is:
tensor(1.9023, device='cuda:0')
Environment
- torch: 2.1.1
- torch2trt: 0.4.0
- tensorrt: 8.6.1