torch2trt
torch2trt copied to clipboard
Inconsistent inference results between PyTorch and TensorRT using torch2trt with ELU operator
Description:
I'm experiencing a discrepancy between the inference results of my PyTorch model and the TensorRT model obtained by converting it using the torch2trt tool.
Reproduce
This can be reproduced by the following script:
from torch2trt import torch2trt
import torch
from torch.nn import Module
model = torch.nn.ELU(inplace=True,).cuda()
input_data=torch.randn([1, 3, 10, 10], dtype=torch.float32).cuda()
model_trt = torch2trt(model, [input_data])
y = model(input_data)
y_trt = model_trt(input_data)
# check the output against PyTorch
print(torch.max(torch.abs(y - y_trt)))
The output is:
tensor(0.0909, device='cuda:0')
Environment
- torch: 1.11.0
- torch2trt: 0.4.0
- tensorrt: 8.6.1.6
Moreover, I noticed the inference results for LeakyRelu operator are also inconsistent between PyTorch and TensorRT. The script is as below:
from torch2trt import torch2trt
import torch
from torch.nn import Module
model = torch.nn.LeakyReLU(inplace=True,).cuda()
input_data = torch.randn([3, 2, 5], dtype=torch.float32).cuda()
model_trt = torch2trt(model, [input_data])
y = model(input_data)
y_trt = model_trt(input_data)
# check the output against PyTorch
print(torch.max(torch.abs(y - y_trt)))