ACOS
ACOS copied to clipboard
Issues for run_step2.py
当训练到步骤二的时候,Eval阶段的输出都是0
12/15/2021 19:36:24 - INFO - __main__ - ***** Running training *****
Epoch: 0%| | 0/1 [00:00<?, ?it/s]12/15/2021 19:36:32 - INFO - __main__ - Total Loss is 0.707695484161377 .
12/15/2021 19:36:33 - INFO - __main__ - Total Loss is 0.17088936269283295 .
12/15/2021 19:36:35 - INFO - __main__ - Total Loss is 0.11365362256765366 .
12/15/2021 19:36:36 - INFO - __main__ - Total Loss is 0.09475410729646683 .
12/15/2021 19:36:38 - INFO - __main__ - Total Loss is 0.10162457078695297 .
12/15/2021 19:36:39 - INFO - __main__ - Total Loss is 0.0938352420926094 .
12/15/2021 19:36:40 - INFO - __main__ - Total Loss is 0.10106469690799713 .
12/15/2021 19:36:42 - INFO - __main__ - Total Loss is 0.1062822937965393 .
12/15/2021 19:36:43 - INFO - __main__ - Total Loss is 0.10448531806468964 .
12/15/2021 19:36:45 - INFO - __main__ - Total Loss is 0.09545283764600754 .
12/15/2021 19:36:46 - INFO - __main__ - Total Loss is 0.08869557082653046 .
12/15/2021 19:36:48 - INFO - __main__ - Total Loss is 0.09898055344820023 .
12/15/2021 19:36:49 - INFO - __main__ - Total Loss is 0.096546471118927 .
12/15/2021 19:36:51 - INFO - __main__ - Total Loss is 0.09676332026720047 .
12/15/2021 19:36:52 - INFO - __main__ - Total Loss is 0.09095398336648941 .
12/15/2021 19:36:54 - INFO - __main__ - Total Loss is 0.095858633518219 .
Quad num: 0
tp: 0.0. fp: 0.0. fn: 251.0.
12/15/2021 19:36:54 - INFO - __main__ - ***** Eval results *****
12/15/2021 19:36:54 - INFO - __main__ - micro-F1 = 0
12/15/2021 19:36:54 - INFO - __main__ - precision = 0
12/15/2021 19:36:54 - INFO - __main__ - recall = 0.0
Quad num: 0
tp: 0.0. fp: 0.0. fn: 895.0.
tp: 0.0. fp: 0.0. fn: 490.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 142.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 98.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 102.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 715.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 399.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 123.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 85.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 95.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 623.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 497.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 144.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 101.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 103.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 725.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 580.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 153.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 139.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 98.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 804.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** aspect results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 596.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 160.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 144.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 103.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 827.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category aspect results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 589.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 158.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 141.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 101.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 818.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment aspect results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 600.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 161.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 145.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 103.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 832.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment aspect results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 580.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 150.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 113.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 102.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 811.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 595.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 154.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 116.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 103.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 827.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 580.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 150.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 114.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 103.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 812.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 595.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 154.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 117.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 104.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 828.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 659.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 167.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 147.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 104.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 895.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** aspect opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 659.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 167.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 147.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 104.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 895.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category aspect opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 659.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 167.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 147.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 104.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 895.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment aspect opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
tp: 0.0. fp: 0.0. fn: 659.0.
0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 167.0.
1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 147.0.
2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 104.0.
3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
tp: 0.0. fp: 0.0. fn: 895.0.
4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0}
12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment aspect opinion results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00%
12/15/2021 19:37:00 - INFO - __main__ - -----------------------------------
12/15/2021 19:37:00 - INFO - __main__ - ***** Test results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0
12/15/2021 19:37:00 - INFO - __main__ - precision = 0
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.0
Epoch: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:28<00:00, 28.83s/it]
12/15/2021 19:37:00 - INFO - __main__ - ***** Test results *****
12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0
12/15/2021 19:37:00 - INFO - __main__ - precision = 0
12/15/2021 19:37:00 - INFO - __main__ - recall = 0.0
我也是遇到了这个问题,请问你解决了吗?
后面改一下epochs的次数就好了
+1
当训练到步骤二的时候,Eval阶段的输出都是0
12/15/2021 19:36:24 - INFO - __main__ - ***** Running training ***** Epoch: 0%| | 0/1 [00:00<?, ?it/s]12/15/2021 19:36:32 - INFO - __main__ - Total Loss is 0.707695484161377 . 12/15/2021 19:36:33 - INFO - __main__ - Total Loss is 0.17088936269283295 . 12/15/2021 19:36:35 - INFO - __main__ - Total Loss is 0.11365362256765366 . 12/15/2021 19:36:36 - INFO - __main__ - Total Loss is 0.09475410729646683 . 12/15/2021 19:36:38 - INFO - __main__ - Total Loss is 0.10162457078695297 . 12/15/2021 19:36:39 - INFO - __main__ - Total Loss is 0.0938352420926094 . 12/15/2021 19:36:40 - INFO - __main__ - Total Loss is 0.10106469690799713 . 12/15/2021 19:36:42 - INFO - __main__ - Total Loss is 0.1062822937965393 . 12/15/2021 19:36:43 - INFO - __main__ - Total Loss is 0.10448531806468964 . 12/15/2021 19:36:45 - INFO - __main__ - Total Loss is 0.09545283764600754 . 12/15/2021 19:36:46 - INFO - __main__ - Total Loss is 0.08869557082653046 . 12/15/2021 19:36:48 - INFO - __main__ - Total Loss is 0.09898055344820023 . 12/15/2021 19:36:49 - INFO - __main__ - Total Loss is 0.096546471118927 . 12/15/2021 19:36:51 - INFO - __main__ - Total Loss is 0.09676332026720047 . 12/15/2021 19:36:52 - INFO - __main__ - Total Loss is 0.09095398336648941 . 12/15/2021 19:36:54 - INFO - __main__ - Total Loss is 0.095858633518219 . Quad num: 0 tp: 0.0. fp: 0.0. fn: 251.0. 12/15/2021 19:36:54 - INFO - __main__ - ***** Eval results ***** 12/15/2021 19:36:54 - INFO - __main__ - micro-F1 = 0 12/15/2021 19:36:54 - INFO - __main__ - precision = 0 12/15/2021 19:36:54 - INFO - __main__ - recall = 0.0 Quad num: 0 tp: 0.0. fp: 0.0. fn: 895.0. tp: 0.0. fp: 0.0. fn: 490.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 142.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 98.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 102.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 715.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 399.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 123.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 85.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 95.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 623.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 497.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 144.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 101.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 103.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 725.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 580.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 153.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 139.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 98.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 804.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** aspect results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 596.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 160.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 144.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 103.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 827.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category aspect results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 589.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 158.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 141.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 101.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 818.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment aspect results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 600.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 161.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 145.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 103.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 832.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment aspect results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 580.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 150.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 113.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 102.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 811.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 595.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 154.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 116.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 103.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 827.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 580.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 150.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 114.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 103.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 812.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 595.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 154.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 117.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 104.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 828.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 659.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 167.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 147.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 104.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 895.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** aspect opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 659.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 167.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 147.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 104.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 895.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category aspect opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 659.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 167.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 147.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 104.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 895.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** sentiment aspect opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- tp: 0.0. fp: 0.0. fn: 659.0. 0 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 167.0. 1 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 147.0. 2 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 104.0. 3 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} tp: 0.0. fp: 0.0. fn: 895.0. 4 : {'precision': 0, 'recall': 0.0, 'micro-F1': 0} 12/15/2021 19:37:00 - INFO - __main__ - ***** category sentiment aspect opinion results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - precision = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.00% 12/15/2021 19:37:00 - INFO - __main__ - ----------------------------------- 12/15/2021 19:37:00 - INFO - __main__ - ***** Test results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0 12/15/2021 19:37:00 - INFO - __main__ - precision = 0 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.0 Epoch: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:28<00:00, 28.83s/it] 12/15/2021 19:37:00 - INFO - __main__ - ***** Test results ***** 12/15/2021 19:37:00 - INFO - __main__ - micro-F1 = 0 12/15/2021 19:37:00 - INFO - __main__ - precision = 0 12/15/2021 19:37:00 - INFO - __main__ - recall = 0.0
是不是处理出一阶段pair的时候,路径设置的有问题? https://github.com/NUSTM/ACOS/blob/09fa3eea7ea11a915796673c7571be80b6c20a28/Extract-Classify-ACOS/tokenized_data/get_1st_pairs.py#L10-L16
Did you try to increase num of epochs? I tried and it worked!
Also, I have one additional question.. what is the number of epochs used in run_step1.py and run_step2.py? I can't reproduce results from article.
Did you try to increase num of epochs? I tried and it worked!
Also, I have one additional question.. what is the number of epochs used in run_step1.py and run_step2.py? I can't reproduce results from article.
The number of training epochs is 30.
你好,我在复现论文的时候,在运行代码时出现了问题: 在run_step2.py的第257行:para_optimizer = list(model.named_parameters())出现了以下错误: AttributeError: 'NoneType' obeject has no attribute 'named_parameters 同时,我下载了bert预训练模型,但是,出现了错误,显示Model name ‘下载的预训练模型路径’ was not found in model name list. We assumed '下载的预训练模型路径/pytorch_model.bin' was a path or url but couldn't find any file associated to this path or url 方便告知一下如何解决吗