Reinforcement-learning-with-tensorflow
Reinforcement-learning-with-tensorflow copied to clipboard
Actor Critic neural combine
Hello, I have question . If I want combine actor and critic neural, how could calculate them loss? nerual like this:
with tf.variable_scope('AC'):
w_initializer = tf.random_normal_initializer(0.0, 0.01)
l1 = tf.layers.dense(
inputs=self.s_in,
units=32, # number of hidden units
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0.,
.1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1')
l2 = tf.layers.dense(
inputs=l1,
units=32, # number of hidden units
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0.,
.1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l2')
# actor
self.acts_prob = tf.layers.dense(
inputs=l2,
units=n_actions, # output units
activation=tf.nn.softmax, # get action probabilities
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='acts_prob'
)
# critic
self.v = tf.layers.dense(
inputs=l2,
units=1, # output units
activation=None,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='V'
)
`