LightX2V
LightX2V copied to clipboard
is this structure correct ?
I am trying to load HunyuanVideo-1.5 using LightX2V and i structered this repo to have everything required:
https://huggingface.co/MohamedRashad/HunyuanVideo-1.5-complete/tree/main
but the problem is that it still gives me error
Exit code: 1. Reason: ightx2v/pipeline.py", line 137, in create_generator
self.runner = self._init_runner(config)
File "/usr/local/lib/python3.10/site-packages/lightx2v/pipeline.py", line 353, in _init_runner
runner.init_modules()
File "/usr/local/lib/python3.10/site-packages/lightx2v/models/runners/default_runner.py", line 40, in init_modules
self.load_model()
File "/usr/local/lib/python3.10/site-packages/lightx2v/utils/profiler.py", line 77, in sync_wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/site-packages/lightx2v/models/runners/default_runner.py", line 89, in load_model
self.text_encoders = self.load_text_encoder()
File "/usr/local/lib/python3.10/site-packages/lightx2v/models/runners/hunyuan_video/hunyuan_video_15_runner.py", line 82, in load_text_encoder
text_encoder = Qwen25VL_TextEncoder(
File "/usr/local/lib/python3.10/site-packages/lightx2v/models/input_encoders/hf/hunyuan15/qwen25/model.py", line 566, in __init__
self.text_encoder = TextEncoder(
File "/usr/local/lib/python3.10/site-packages/lightx2v/models/input_encoders/hf/hunyuan15/qwen25/model.py", line 275, in __init__
self.tokenizer, self.tokenizer_path, self.processor = load_tokenizer(
File "/usr/local/lib/python3.10/site-packages/lightx2v/models/input_encoders/hf/hunyuan15/qwen25/model.py", line 176, in load_tokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, padding_side=padding_side)
File "/usr/local/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 1156, in from_pretrained
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
File "/usr/local/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2112, in from_pretrained
return cls._from_pretrained(
File "/usr/local/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2419, in _from_pretrained
if _is_local and _config.model_type not in [
AttributeError: 'dict' object has no attribute 'model_type'
This is the code:
# Download main model with specific patterns
model_path = snapshot_download(
repo_id="MohamedRashad/HunyuanVideo-1.5-complete",
allow_patterns=[
"transformer/720p_i2v/*",
"text_encoder/*",
"vae/*",
"scheduler/*",
"upsampler/*",
"config.json",
]
)
# Initialize pipeline without image_path (will be set per request)
pipe = LightX2VPipeline(
model_path=model_path,
model_cls="hunyuan_video_1.5",
transformer_model_name="720p_i2v",
task="i2v",
)
# Create generator once during initialization
pipe.create_generator(
attn_mode="flash_attn2", # Using standard flash attention (sage_attn2 requires sageattention package)
infer_steps=50,
num_frames=121,
guidance_scale=6.0,
sample_shift=9.0,
aspect_ratio="16:9",
fps=24,
)