onetl
onetl copied to clipboard
One ETL tool to rule them all
.. _readme:
onETL
|Repo Status| |PyPI| |PyPI License| |PyPI Python Version| |Documentation| |Build Status| |Coverage| |pre-commit.ci|
.. |Repo Status| image:: https://www.repostatus.org/badges/latest/active.svg :target: https://github.com/MobileTeleSystems/onetl .. |PyPI| image:: https://img.shields.io/pypi/v/onetl :target: https://pypi.org/project/onetl/ .. |PyPI License| image:: https://img.shields.io/pypi/l/onetl.svg :target: https://github.com/MobileTeleSystems/onetl/blob/develop/LICENSE.txt .. |PyPI Python Version| image:: https://img.shields.io/pypi/pyversions/onetl.svg :target: https://badge.fury.io/py/onetl .. |Documentation| image:: https://readthedocs.org/projects/onetl/badge/?version=stable :target: https://onetl.readthedocs.io/ .. |Build Status| image:: https://github.com/MobileTeleSystems/onetl/workflows/Tests/badge.svg :target: https://github.com/MobileTeleSystems/onetl/actions .. |Coverage| image:: https://codecov.io/gh/MobileTeleSystems/onetl/branch/develop/graph/badge.svg?token=RIO8URKNZJ :target: https://codecov.io/gh/MobileTeleSystems/onetl .. |pre-commit.ci| image:: https://results.pre-commit.ci/badge/github/MobileTeleSystems/onetl/develop.svg :target: https://results.pre-commit.ci/latest/github/MobileTeleSystems/onetl/develop
|Logo|
.. |Logo| image:: docs/_static/logo_wide.svg :alt: onETL logo :target: https://github.com/MobileTeleSystems/onetl
What is onETL?
Python ETL/ELT library powered by Apache Spark <https://spark.apache.org/>_ & other open-source tools.
Goals
- Provide unified classes to extract data from (E) & load data to (L) various stores.
- Provides
Spark DataFrame API <https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.html>_ for performing transformations (T) in terms of ETL. - Provide direct assess to database, allowing to execute SQL queries, as well as DDL, DML, and call functions/procedures. This can be used for building up ELT pipelines.
- Support different
read strategies <https://onetl.readthedocs.io/en/stable/strategy/index.html>_ for incremental and batch data fetching. - Provide
hooks <https://onetl.readthedocs.io/en/stable/hooks/index.html>_ &plugins <https://onetl.readthedocs.io/en/stable/plugins.html>_ mechanism for altering behavior of internal classes.
Non-goals
- onETL is not a Spark replacement. It just provides additional functionality that Spark does not have, and improves UX for end users.
- onETL is not a framework, as it does not have requirements to project structure, naming, the way of running ETL/ELT processes, configuration, etc. All of that should be implemented in some other tool.
- onETL is deliberately developed without any integration with scheduling software like Apache Airflow. All integrations should be implemented as separated tools.
- Only batch operations, no streaming. For streaming prefer
Apache Flink <https://flink.apache.org/>_.
Requirements
- Python 3.7 - 3.12
- PySpark 2.3.x - 3.5.x (depends on used connector)
- Java 8+ (required by Spark, see below)
- Kerberos libs & GCC (required by
Hive,HDFSandSparkHDFSconnectors)
Supported storages
Database
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Storage | Powered by |
+==============+=========================================================================================================================+
| Clickhouse | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| MSSQL | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| MySQL | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Postgres | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Oracle | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Teradata | Apache Spark `JDBC Data Source <https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Hive | Apache Spark `Hive integration <https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Kafka | Apache Spark `Kafka integration <https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| Greenplum | VMware `Greenplum Spark connector <https://docs.vmware.com/en/VMware-Greenplum-Connector-for-Apache-Spark/index.html>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
| MongoDB | `MongoDB Spark connector <https://www.mongodb.com/docs/spark-connector/current>`_ |
+--------------+-------------------------------------------------------------------------------------------------------------------------+
File
~~~~
+--------------+--------------------------------------------------------------------+
| Storage | Powered by |
+==============+====================================================================+
| HDFS | `HDFS Python client <https://pypi.org/project/hdfs/>`_ |
+--------------+--------------------------------------------------------------------+
| S3 | `minio-py client <https://pypi.org/project/minio/>`_ |
+--------------+--------------------------------------------------------------------+
| SFTP | `Paramiko library <https://pypi.org/project/paramiko/>`_ |
+--------------+--------------------------------------------------------------------+
| FTP | `FTPUtil library <https://pypi.org/project/ftputil/>`_ |
+--------------+--------------------------------------------------------------------+
| FTPS | `FTPUtil library <https://pypi.org/project/ftputil/>`_ |
+--------------+--------------------------------------------------------------------+
| WebDAV | `WebdavClient3 library <https://pypi.org/project/webdavclient3/>`_ |
+--------------+--------------------------------------------------------------------+
| Samba | `pysmb library <https://pypi.org/project/pysmb/>`_ |
+--------------+--------------------------------------------------------------------+
Files as DataFrame
+--------------+---------------------------------------------------------------------------------------------------------------+
| Storage | Powered by |
+==============+===============================================================================================================+
| SparkLocalFS | Apache Spark File Data Source <https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html>_ |
+--------------+---------------------------------------------------------------------------------------------------------------+
| SparkHDFS | Apache Spark File Data Source <https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html>_ |
+--------------+---------------------------------------------------------------------------------------------------------------+
| SparkS3 | Hadoop AWS <https://hadoop.apache.org/docs/current3/hadoop-aws/tools/hadoop-aws/index.html>_ library |
+--------------+---------------------------------------------------------------------------------------------------------------+
.. documentation
Documentation
See https://onetl.readthedocs.io/
How to install
.. _install:
Minimal installation
.. _minimal-install:
Base ``onetl`` package contains:
* ``DBReader``, ``DBWriter`` and related classes
* ``FileDownloader``, ``FileUploader``, ``FileMover`` and related classes, like file filters & limits
* ``FileDFReader``, ``FileDFWriter`` and related classes, like file formats
* Read Strategies & HWM classes
* Plugins support
It can be installed via:
.. code:: bash
pip install onetl
.. warning::
This method does NOT include any connections.
This method is recommended for use in third-party libraries which require for ``onetl`` to be installed,
but do not use its connection classes.
With DB and FileDF connections
.. _spark-install:
All DB connection classes (Clickhouse, Greenplum, Hive and others)
and all FileDF connection classes (SparkHDFS, SparkLocalFS, SparkS3)
require Spark to be installed.
.. _java-install:
Firstly, you should install JDK. The exact installation instruction depends on your OS, here are some examples:
.. code:: bash
yum install java-1.8.0-openjdk-devel # CentOS 7 + Spark 2
dnf install java-11-openjdk-devel # CentOS 8 + Spark 3
apt-get install openjdk-11-jdk # Debian-based + Spark 3
.. _spark-compatibility-matrix:
Compatibility matrix ^^^^^^^^^^^^^^^^^^^^
+--------------------------------------------------------------+-------------+-------------+-------+
| Spark | Python | Java | Scala |
+==============================================================+=============+=============+=======+
| 2.3.x <https://spark.apache.org/docs/2.3.1/#downloading>_ | 3.7 only | 8 only | 2.11 |
+--------------------------------------------------------------+-------------+-------------+-------+
| 2.4.x <https://spark.apache.org/docs/2.4.8/#downloading>_ | 3.7 only | 8 only | 2.11 |
+--------------------------------------------------------------+-------------+-------------+-------+
| 3.2.x <https://spark.apache.org/docs/3.2.4/#downloading>_ | 3.7 - 3.10 | 8u201 - 11 | 2.12 |
+--------------------------------------------------------------+-------------+-------------+-------+
| 3.3.x <https://spark.apache.org/docs/3.3.4/#downloading>_ | 3.7 - 3.10 | 8u201 - 17 | 2.12 |
+--------------------------------------------------------------+-------------+-------------+-------+
| 3.4.x <https://spark.apache.org/docs/3.4.3/#downloading>_ | 3.7 - 3.12 | 8u362 - 20 | 2.12 |
+--------------------------------------------------------------+-------------+-------------+-------+
| 3.5.x <https://spark.apache.org/docs/3.5.1/#downloading>_ | 3.8 - 3.12 | 8u371 - 20 | 2.12 |
+--------------------------------------------------------------+-------------+-------------+-------+
.. _pyspark-install:
Then you should install PySpark via passing spark to extras:
.. code:: bash
pip install onetl[spark] # install latest PySpark
or install PySpark explicitly:
.. code:: bash
pip install onetl pyspark==3.5.1 # install a specific PySpark version
or inject PySpark to sys.path in some other way BEFORE creating a class instance.
Otherwise connection object cannot be created.
With File connections
.. _files-install:
All File (but not *FileDF*) connection classes (``FTP``, ``SFTP``, ``HDFS`` and so on) requires specific Python clients to be installed.
Each client can be installed explicitly by passing connector name (in lowercase) to ``extras``:
.. code:: bash
pip install onetl[ftp] # specific connector
pip install onetl[ftp,ftps,sftp,hdfs,s3,webdav,samba] # multiple connectors
To install all file connectors at once you can pass ``files`` to ``extras``:
.. code:: bash
pip install onetl[files]
**Otherwise class import will fail.**
With Kerberos support
.. _kerberos-install:
Most of Hadoop instances set up with Kerberos support, so some connections require additional setup to work properly.
-
HDFSUsesrequests-kerberos <https://pypi.org/project/requests-kerberos/>_ andGSSApi <https://pypi.org/project/gssapi/>_ for authentication. It also useskinitexecutable to generate Kerberos ticket. -
HiveandSparkHDFSrequire Kerberos ticket to exist before creating Spark session.
So you need to install OS packages with:
krb5libs- Headers for
krb5 gccor other compiler for C sources
The exact installation instruction depends on your OS, here are some examples:
.. code:: bash
dnf install krb5-devel gcc # CentOS, OracleLinux
apt install libkrb5-dev gcc # Debian-based
Also you should pass kerberos to extras to install required Python packages:
.. code:: bash
pip install onetl[kerberos]
Full bundle
.. _full-bundle:
To install all connectors and dependencies, you can pass ``all`` into ``extras``:
.. code:: bash
pip install onetl[all]
# this is just the same as
pip install onetl[spark,files,kerberos]
.. warning::
This method consumes a lot of disk space, and requires for Java & Kerberos libraries to be installed into your OS.
.. _quick-start:
Quick start
------------
MSSQL → Hive
Read data from MSSQL, transform & write to Hive.
.. code:: bash
# install onETL and PySpark
pip install onetl[spark]
.. code:: python
# Import pyspark to initialize the SparkSession
from pyspark.sql import SparkSession
# import function to setup onETL logging
from onetl.log import setup_logging
# Import required connections
from onetl.connection import MSSQL, Hive
# Import onETL classes to read & write data
from onetl.db import DBReader, DBWriter
# change logging level to INFO, and set up default logging format and handler
setup_logging()
# Initialize new SparkSession with MSSQL driver loaded
maven_packages = MSSQL.get_packages()
spark = (
SparkSession.builder.appName("spark_app_onetl_demo")
.config("spark.jars.packages", ",".join(maven_packages))
.enableHiveSupport() # for Hive
.getOrCreate()
)
# Initialize MSSQL connection and check if database is accessible
mssql = MSSQL(
host="mssqldb.demo.com",
user="onetl",
password="onetl",
database="Telecom",
spark=spark,
# These options are passed to MSSQL JDBC Driver:
extra={"ApplicationIntent": "ReadOnly"},
).check()
# >>> INFO:|MSSQL| Connection is available
# Initialize DBReader
reader = DBReader(
connection=mssql,
source="dbo.demo_table",
columns=["on", "etl"],
# Set some MSSQL read options:
options=MSSQL.ReadOptions(fetchsize=10000),
)
# checks that there is data in the table, otherwise raises exception
reader.raise_if_no_data()
# Read data to DataFrame
df = reader.run()
df.printSchema()
# root
# |-- id: integer (nullable = true)
# |-- phone_number: string (nullable = true)
# |-- region: string (nullable = true)
# |-- birth_date: date (nullable = true)
# |-- registered_at: timestamp (nullable = true)
# |-- account_balance: double (nullable = true)
# Apply any PySpark transformations
from pyspark.sql.functions import lit
df_to_write = df.withColumn("engine", lit("onetl"))
df_to_write.printSchema()
# root
# |-- id: integer (nullable = true)
# |-- phone_number: string (nullable = true)
# |-- region: string (nullable = true)
# |-- birth_date: date (nullable = true)
# |-- registered_at: timestamp (nullable = true)
# |-- account_balance: double (nullable = true)
# |-- engine: string (nullable = false)
# Initialize Hive connection
hive = Hive(cluster="rnd-dwh", spark=spark)
# Initialize DBWriter
db_writer = DBWriter(
connection=hive,
target="dl_sb.demo_table",
# Set some Hive write options:
options=Hive.WriteOptions(if_exists="replace_entire_table"),
)
# Write data from DataFrame to Hive
db_writer.run(df_to_write)
# Success!
SFTP → HDFS
Download files from SFTP & upload them to HDFS.
.. code:: bash
# install onETL with SFTP and HDFS clients, and Kerberos support
pip install onetl[hdfs,sftp,kerberos]
.. code:: python
# import function to setup onETL logging
from onetl.log import setup_logging
# Import required connections
from onetl.connection import SFTP, HDFS
# Import onETL classes to download & upload files
from onetl.file import FileDownloader, FileUploader
# import filter & limit classes
from onetl.file.filter import Glob, ExcludeDir
from onetl.file.limit import MaxFilesCount
# change logging level to INFO, and set up default logging format and handler
setup_logging()
# Initialize SFTP connection and check it
sftp = SFTP(
host="sftp.test.com",
user="someuser",
password="somepassword",
).check()
# >>> INFO:|SFTP| Connection is available
# Initialize downloader
file_downloader = FileDownloader(
connection=sftp,
source_path="/remote/tests/Report", # path on SFTP
local_path="/local/onetl/Report", # local fs path
filters=[
# download only files matching the glob
Glob("*.csv"),
# exclude files from this directory
ExcludeDir("/remote/tests/Report/exclude_dir/"),
],
limits=[
# download max 1000 files per run
MaxFilesCount(1000),
],
options=FileDownloader.Options(
# delete files from SFTP after successful download
delete_source=True,
# mark file as failed if it already exist in local_path
if_exists="error",
),
)
# Download files to local filesystem
download_result = downloader.run()
# Method run returns a DownloadResult object,
# which contains collection of downloaded files, divided to 4 categories
download_result
# DownloadResult(
# successful=[
# LocalPath('/local/onetl/Report/file_1.json'),
# LocalPath('/local/onetl/Report/file_2.json'),
# ],
# failed=[FailedRemoteFile('/remote/onetl/Report/file_3.json')],
# ignored=[RemoteFile('/remote/onetl/Report/file_4.json')],
# missing=[],
# )
# Raise exception if there are failed files, or there were no files in the remote filesystem
download_result.raise_if_failed() or download_result.raise_if_empty()
# Do any kind of magic with files: rename files, remove header for csv files, ...
renamed_files = my_rename_function(download_result.success)
# function removed "_" from file names
# [
# LocalPath('/home/onetl/Report/file1.json'),
# LocalPath('/home/onetl/Report/file2.json'),
# ]
# Initialize HDFS connection
hdfs = HDFS(
host="my.name.node",
user="someuser",
password="somepassword", # or keytab
)
# Initialize uploader
file_uploader = FileUploader(
connection=hdfs,
target_path="/user/onetl/Report/", # hdfs path
)
# Upload files from local fs to HDFS
upload_result = file_uploader.run(renamed_files)
# Method run returns a UploadResult object,
# which contains collection of uploaded files, divided to 4 categories
upload_result
# UploadResult(
# successful=[RemoteFile('/user/onetl/Report/file1.json')],
# failed=[FailedLocalFile('/local/onetl/Report/file2.json')],
# ignored=[],
# missing=[],
# )
# Raise exception if there are failed files, or there were no files in the local filesystem, or some input file is missing
upload_result.raise_if_failed() or upload_result.raise_if_empty() or upload_result.raise_if_missing()
# Success!
S3 → Postgres
Read files directly from S3 path, convert them to dataframe, transform it and then write to a database.
.. code:: bash
# install onETL and PySpark
pip install onetl[spark]
.. code:: python
# Import pyspark to initialize the SparkSession
from pyspark.sql import SparkSession
# import function to setup onETL logging
from onetl.log import setup_logging
# Import required connections
from onetl.connection import Postgres, SparkS3
# Import onETL classes to read files
from onetl.file import FileDFReader
from onetl.file.format import CSV
# Import onETL classes to write data
from onetl.db import DBWriter
# change logging level to INFO, and set up default logging format and handler
setup_logging()
# Initialize new SparkSession with Hadoop AWS libraries and Postgres driver loaded
maven_packages = SparkS3.get_packages(spark_version="3.5.1") + Postgres.get_packages()
spark = (
SparkSession.builder.appName("spark_app_onetl_demo")
.config("spark.jars.packages", ",".join(maven_packages))
.getOrCreate()
)
# Initialize S3 connection and check it
spark_s3 = SparkS3(
host="s3.test.com",
protocol="https",
bucket="my-bucket",
access_key="somekey",
secret_key="somesecret",
# Access bucket as s3.test.com/my-bucket
extra={"path.style.access": True},
spark=spark,
).check()
# >>> INFO:|SparkS3| Connection is available
# Describe file format and parsing options
csv = CSV(
delimiter=";",
header=True,
encoding="utf-8",
)
# Describe DataFrame schema of files
from pyspark.sql.types import (
DateType,
DoubleType,
IntegerType,
StringType,
StructField,
StructType,
TimestampType,
)
df_schema = StructType(
[
StructField("id", IntegerType()),
StructField("phone_number", StringType()),
StructField("region", StringType()),
StructField("birth_date", DateType()),
StructField("registered_at", TimestampType()),
StructField("account_balance", DoubleType()),
],
)
# Initialize file df reader
reader = FileDFReader(
connection=spark_s3,
source_path="/remote/tests/Report", # path on S3 there *.csv files are located
format=csv, # file format with specific parsing options
df_schema=df_schema, # columns & types
)
# Read files directly from S3 as Spark DataFrame
df = reader.run()
# Check that DataFrame schema is same as expected
df.printSchema()
# root
# |-- id: integer (nullable = true)
# |-- phone_number: string (nullable = true)
# |-- region: string (nullable = true)
# |-- birth_date: date (nullable = true)
# |-- registered_at: timestamp (nullable = true)
# |-- account_balance: double (nullable = true)
# Apply any PySpark transformations
from pyspark.sql.functions import lit
df_to_write = df.withColumn("engine", lit("onetl"))
df_to_write.printSchema()
# root
# |-- id: integer (nullable = true)
# |-- phone_number: string (nullable = true)
# |-- region: string (nullable = true)
# |-- birth_date: date (nullable = true)
# |-- registered_at: timestamp (nullable = true)
# |-- account_balance: double (nullable = true)
# |-- engine: string (nullable = false)
# Initialize Postgres connection
postgres = Postgres(
host="192.169.11.23",
user="onetl",
password="somepassword",
database="mydb",
spark=spark,
)
# Initialize DBWriter
db_writer = DBWriter(
connection=postgres,
# write to specific table
target="public.my_table",
# with some writing options
options=Postgres.WriteOptions(if_exists="append"),
)
# Write DataFrame to Postgres table
db_writer.run(df_to_write)
# Success!