processing-imageprocessing
processing-imageprocessing copied to clipboard
Collection of basic image processing algorithms for processing
Image processing for Processing
This library collects various image processing algorithms and provides simple access to them. All algorithms are implemented in Java and runs without any other dependencies. Some algorithms are pretty standard and others maybe do you know from Photoshop. It starts with less basic features and grow over the last years. If you need high power performance better use opencv for processing.
If you like this project and you want to keep me awake 🤪
Installation
If you want to use this library in your processing sketch you can download it via the integrated Contribution Manager.

Examples
Overview
The following algorithms are supported in this library. Click on the link to see an example image and a code snippet.
- Basics
- Grayscale
- Flip
- Invert
- Threshold
- Dilation
- Erosion
- Vignette
- Quantization
- PaletteMapping
- Difference
- Blur
- Gaussian
- Pixelize
- Tilt-Shift-Effect
- Edge detection
- Canny
- Sobel
- Optimisation
- Brightness
- Contrast
- Saturation
- Changing highlights
- Changing shadows
- Auto balance
- Bloom-Effect
- Sharpen
- Color-Shift
- Looks
- Lookup table (LUT)
- RetroConsole effect (Gameboy)
- Glitch-Effect
- Matte-Effect
- Sabattier-Effect
- Strokes
- Dithering
- Halftone
- Toning
- Split-Toning
- Sine-Wave
- Knitting
- ASCII
- Miscellaneous
- Stacked images
- Blending images
Original image

Photo taken by me more here
Basics
Grayscale image

PImage processedImage = Grayscale.apply(image);
Flip image

PImage processedImage = Flip.apply(image, horizontal, vertical); // horizontal and vertical are boolean
Invert colors

// invertRed, invertGreen and invertBlue are boolean
PImage processedImage = InvertColors.apply(image, invertRed, invertGreen, invertBlue);
Threshold image

PImage processedImage = Threshold.apply(image); // Auto threshold
PImage processedImage = Threshold.apply(image, value); // Threshold value between 0 and 255
Dilation image

PImage processedImage = Dilation.apply(image, radius); // radius is a positive number
Erosion image

PImage processedImage = Erosion.apply(image, radius); // radius is a positive number
Vignette image

// intensity and vignetteWidth are floats between 0.0 and 1.0
PImage processedImage = Vignette.apply(image, intensity, vignetteWidth);
Quantization

PImage processedImage = Quantization.apply(image, shades); // shades is a positive number between 1 and 255
PaletteMapping

PImage processedImage = PaletteMapping.apply(image, color1, color2, color3); // Add any number of colors from dark to light
Difference

// difference is a float between 0.0 and 1.0 from less to very different
float difference = Comparison.howDifferent(image1, image2);
// differenceImage is the difference between the pixel values (black is no difference, white is high difference)
PImage differenceImage = Comparison.calculateDifferenceImage(image1, image2);
Blur
Gaussian blur image

PImage processedImage = Gaussian.apply(image, 7, 0.84089642); // kernel size and sigma
Pixelize image
![]()
// pixelsize is a positive number
PImage processedImage = Pixelation.apply(image, pixelsize);
// Pixelize a sub area of the input image
PImage processedImage = Pixelation.apply(image, pixelsize, subX, subY, subWidth, subHeight);
Tilt-Shift-Effect

PImage processedImage = TiltShift.apply(image, blurIntensity, horizontal, position, sharpWideness);
Edge detection
Canny's algorithm

PImage processedImage = CannyEdgeDetector.apply(image);
Sobels algorithm

PImage processedImage = SobelEdgeDetector.apply(image);
// for colored sobel (for each color channel)
PImage processedImage = SobelEdgeDetector.apply(image, false);
Optimisation
Brightness

PImage processedImage = Brightness.apply(image, value);
// value isa positive number for brighting up or a negative for darken down
Contrast

// intensity is between -1.0 and 1.0
PImage processedImage = Contrast.apply(image, intensity);
Saturation

// intensity is between 0.0 and 10.0
// 0.0 to 1.0 decreases and all above increases the saturation
PImage processedImage = Saturation.apply(image, intensity);
Changing highlights

// intensity between -1.0 and 1.0
PImage processedImage = Lights.apply(image, intensity);
Changing shadows

// intensity between -1.0 and 1.0
PImage processedImage = Shadows.apply(image, intensity);
AutoBalance image

PImage processedImage = AutoBalance.apply(image);
Bloom image

PImage processedImage = Bloom.apply(image, intensity); // intensity between 0 and 255
Sharpen image

PImage processedImage = Sharpen.apply(image, sharpIntensity); // sharpIntensity between 0.0 and 10.0
Color shift image

// hue is a value between 0 and 360
// offset is the color range which is accepted (in hue range)
// shift is the number of the subtracted or added hue value
PImage processedImage = ColorShift.applyHue(image, hue, offset, shift); // or short: ColorShift.apply(image, hue, offset, shift)
PImage processedImage = ColorShift.applySaturation(image, hue, offset, shift);
PImage processedImage = ColorShift.applyBrightness(image, hue, offset, shift);
Looks
Lookup table image

LUT style = LUT.loadLut(LUT.STYLE.CONTRAST);
PImage processedImage = LUT.apply(image, style);
RetroConsole effect (Gameboy)

PImage processedImage = RetroConsole.applyGameboy(image, pixelSize);
Glitch image

PImage processedImage = Glitch.apply(image, intensity, scanlineheight);
Matte effect

PImage processedImage = Matte.apply(image,
matteIntensity, // intensity for the lifting blacks between 0 and 255
contrastIntensity, // intensity for the constrast between 0 and 255
saturationIntensity); // change for the saturation between -0.5 and 0.5
Sabattier effect

// intensity between 0.0 and 1.0
PImage processedImage = Sabattier.apply(image, intensity);
PImage processedImage = Sabattier.applyRed(image, intensity);
PImage processedImage = Sabattier.applyGreen(image, intensity);
PImage processedImage = Sabattier.applyBlue(image, intensity);
Strokes image
| random angles | fixed angle |
|---|---|
![]() |
![]() |
PImage processedImage = Strokes.apply(image, gridSize, lineLength);
PImage processedImage = Strokes.apply(image,
gridSize, // is positive and the area for compound pixels
lineLength, // is positive and the length in pixels for each line
lineWeight, // is positive and the weight of each line in pixel
linesPerGrid, // the number of lines per grid
lineIntensity, // alpha value for each line between 0 and 255
degree, // if set the rotation is fixed in degree, otherwise random
inColor, // true for colors else black and white
backgroundColor); // color for the background
Dithering

// default dithering algorithm is BAYER_4x4
PImage processedImage = Dithering.apply(image);
// change algrithm: BAYER_2x2, BAYER_4x4, BAYER_8x8
PImage processedImage = Dithering.apply(image, Dithering.Algorithm.BAYER_8x8);
// use a curstom kernel (kernel = float[])
PImage processedImage = Dithering.aapply(PImage image, kernel);
Halftone image

PImage processedImage = Halftone.apply(image, dotsize); // dot size in pixel
PImage processedImage = Halftone.apply(image, dotsize, grid); // grid = true, on false honeycomb style
PImage processedImage = Halftone.apply(image, dotsize, foreground, background); // background and foreground colors
PImage processedImage = Halftone.apply(image, dotsize, foreground, background, grid);
PImage processedImage = Halftone.apply(image, dotsize, foreground, background, spacing, grid); // size between dots in pixels
Toning image

// tone is a color and intensity is a value between 0.0 and 1.0
color tone = color(255, 11, 120);
float intensity = 0.8f;
PImage processedImage = Toning.apply(image, tone, intensity);
Split toning image

PImage processedImage = SplitToning.apply(
image,
highlightTone, // Color for highlighs (f.e. color highlightTone = color(211, 180, 21);
intensityHighlights, // intensity for the toning in highlights between 0.0 and 1.0
shadowTone, // Color for the shadows (f.e. color shadowTone = color(124, 32, 201);
intensityShadows); // intensity for the toning in the shadows between 0.0 and 1.0
Sine-Wave image

PImage processedImage = SineWave.apply(image, rowHeight, weight, backgroundColor, wavesColor);
Knitting image

// keeps the original colors
PImage processedImage = Knitting.apply(image, size);
// Sets foreground and background color and uses a threshold
PImage processedImage = Knitting.apply(image, size, threshold, 240, #EE0000);
ASCII image

PImage processedImage = ASCII.apply(image);
// characterset = ASCII.SHORT_SET or ASCII.LONG_SET, another String from black to white
PImage processedImage = ASCII.apply(image, characterset);
PImage processedImage = ASCII.apply(image, characterset, fontSize); // fontSize is an integer
PImage processedImage = ASCII.apply(image, characterset, fontSize, foregroundColor, backgroundColor, toneInColor);
// To get the ASCII image as plain string use the following method
PImage processedImage = ASCII.getAsciiText(image);
Miscellaneous
Stacked images

// Add so many images in the end as you need
PImage processedImage = Stacker.apply(Stacker.ALGORITHM.AVERAGE, image1, image2);
PImage processedImage = Stacker.apply(Stacker.ALGORITHM.MEDIAN, image1, image2);
Blending two images

// intensity is a float between 0.0 and 1.0
PImage processedImage = Blend.apply(image1, image2, intensity);
Special thanks
My special thanks goes to avatarr for implementing and publishing basic algorithms. Also thank you very much Tom Gibara for your great blog post and the implementation of the canny edge detector.
Moreover I thank you Joseph HENRY for the Sine-Wave-effect code and uheinema for the Sabattier code in the Processing Discourse.

