sd-webui-controlnet
sd-webui-controlnet copied to clipboard
Inconsistencies between UI and API
Is there an existing issue for this?
- [X] I have searched the existing issues and checked the recent builds/commits of both this extension and the webui
What happened?
- It is very possible I have made an error and this ends up being a support request. If that is the case I apologize and thank you for any help you can provide.
- I have attempted to set up and API from which I can use controlnet via auto1111
- I found some settings I like using the WebUI
- I attempted to translate those settings to the attached json payload
- I sent this payload to the API using Postman
- I observed different results compared to the UI (lack of geometric consistency with the original image)
{
"prompt": "pos propmpt...",
"negative_prompt": "neg propmpt...",
"sampler_name": "Euler a",
"sampler_index": "Euler a",
"steps": 20,
"cfg_scale": 7,
"batch": 1,
"width": 998,
"height": 643,
"init_images": ["base64..."],
"seed": 3047,
"denoising_strength": 0.95,
"controlnet_units": [
{
"model": "control_depth-fp16 [400750f6]",
"module": "depth_leres",
"weight": 1,
"guessmode": false,
"processor_res": 512,
"threshold_a": 0,
"threshold_b": 0
},{
"model": "control_canny-fp16 [e3fe7712]",
"module": "canny",
"weight": "0.5",
"guessmode": false,
"processor_res": 512,
"threshold_a": 100,
"threshold_b": 200
}
]
}
error message:
pltvf 2023-03-28T19:54:07.859Z Traceback (most recent call last):
pltvf 2023-03-28T19:54:07.859Z File "/app/stable-diffusion-webui/modules/scripts.py", line 417, in process
pltvf 2023-03-28T19:54:07.859Z script.process(p, *script_args)
pltvf 2023-03-28T19:54:07.859Z File "/app/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/controlnet.py", line 628, in process
pltvf 2023-03-28T19:54:07.859Z unit = self.parse_remote_call(p, unit, idx)
pltvf 2023-03-28T19:54:07.859Z File "/app/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/controlnet.py", line 540, in parse_remote_call
pltvf 2023-03-28T19:54:07.859Z unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
pltvf 2023-03-28T19:54:07.859Z AttributeError: 'str' object has no attribute 'enabled'
Steps to reproduce the problem
- send the above JSON as the payload from postman / python requests / your preferred tool
- visualize the returned image
- see that controlnet has not been applied
What should have happened?
I expect to see the same results with the API as I see from the UI.
Feature Request: as a user I should be able to click a button to export the json payload for an API call from the WebUI
Commit where the problem happens
webui: 955df7751eef11bb7697e2d77f6b8a6226b21e13 controlnet: 241c05f8c9d3c5abe637187e3c4bb46f17447029
python: 3.10.6 • torch: 1.13.1+cu117 • xformers: 0.0.16rc425 • gradio: 3.23.0 • commit: 955df775 • checkpoint: 6ce0161689
What browsers do you use to access the UI ?
Google Chrome
Command Line Arguments
`--listen --ui-config-file ui-config.json --ui-settings-file config.json --disable-console-progressbars --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding --enable-console-prompts --no-download-sd-model --api --skip-version-check --force-enable-xformers --xformers --enable-insecure-extension-access`
Console logs
Start up + UI calls
vnn22 2023-03-28T20:04:27.729Z
vnn22 2023-03-28T20:04:27.729Z ==========
vnn22 2023-03-28T20:04:27.729Z == CUDA ==
vnn22 2023-03-28T20:04:27.729Z ==========
vnn22 2023-03-28T20:04:27.733Z
vnn22 2023-03-28T20:04:27.733Z CUDA Version 11.7.1
vnn22 2023-03-28T20:04:27.735Z
vnn22 2023-03-28T20:04:27.735Z Container image Copyright (c) 2016-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
vnn22 2023-03-28T20:04:27.736Z
vnn22 2023-03-28T20:04:27.736Z This container image and its contents are governed by the NVIDIA Deep Learning Container License.
vnn22 2023-03-28T20:04:27.736Z By pulling and using the container, you accept the terms and conditions of this license:
vnn22 2023-03-28T20:04:27.736Z https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license
vnn22 2023-03-28T20:04:27.736Z
vnn22 2023-03-28T20:04:27.736Z A copy of this license is made available in this container at /NGC-DL-CONTAINER-LICENSE for your convenience.
vnn22 2023-03-28T20:04:27.750Z
vnn22 2023-03-28T20:04:30.597Z ---------------
vnn22 2023-03-28T20:04:30.597Z Running script './on_start.sh' to download models ...
vnn22 2023-03-28T20:04:30.597Z ---------------
vnn22 2023-03-28T20:04:30.603Z $ download-model --checkpoint "v2-1_768-ema-pruned.safetensors" "https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/36a01dc742066de2e8c91e7cf0b8f6b53ef53da1/v2-1_768-ema-pruned.safetensors"
vnn22 2023-03-28T20:04:30.603Z
vnn22 2023-03-28T20:05:13.077Z [#06b81d 214MiB/4.8GiB(4%) CN:16 DL:277MiB ETA:17s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 483MiB/4.8GiB(9%) CN:16 DL:274MiB ETA:16s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 806MiB/4.8GiB(16%) CN:16 DL:293MiB ETA:14s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 1.0GiB/4.8GiB(22%) CN:16 DL:299MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 1.2GiB/4.8GiB(26%) CN:16 DL:280MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 1.4GiB/4.8GiB(30%) CN:16 DL:264MiB ETA:13s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 1.6GiB/4.8GiB(34%) CN:16 DL:251MiB ETA:13s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 1.8GiB/4.8GiB(37%) CN:16 DL:240MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 1.9GiB/4.8GiB(40%) CN:16 DL:230MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 2.1GiB/4.8GiB(43%) CN:16 DL:223MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 2.2GiB/4.8GiB(46%) CN:16 DL:211MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 2.4GiB/4.8GiB(50%) CN:16 DL:198MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 2.5GiB/4.8GiB(53%) CN:16 DL:181MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 2.7GiB/4.8GiB(56%) CN:16 DL:167MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 2.8GiB/4.8GiB(59%) CN:16 DL:163MiB ETA:12s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.0GiB/4.8GiB(62%) CN:16 DL:159MiB ETA:11s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.1GiB/4.8GiB(65%) CN:16 DL:158MiB ETA:10s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.3GiB/4.8GiB(68%) CN:16 DL:158MiB ETA:9s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.5GiB/4.8GiB(72%) CN:16 DL:157MiB ETA:8s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.6GiB/4.8GiB(75%) CN:16 DL:158MiB ETA:7s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.8GiB/4.8GiB(78%) CN:16 DL:157MiB ETA:6s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 3.9GiB/4.8GiB(81%) CN:16 DL:157MiB ETA:5s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 4.1GiB/4.8GiB(84%) CN:16 DL:157MiB ETA:4s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 4.2GiB/4.8GiB(87%) CN:16 DL:158MiB ETA:3s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 4.4GiB/4.8GiB(91%) CN:16 DL:158MiB ETA:2s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 4.5GiB/4.8GiB(94%) CN:16 DL:158MiB ETA:1s]
vnn22 2023-03-28T20:05:13.077Z [#06b81d 4.7GiB/4.8GiB(97%) CN:16 DL:159MiB]
vnn22 2023-03-28T20:05:13.077Z
vnn22 2023-03-28T20:05:13.077Z Download Results:
vnn22 2023-03-28T20:05:13.077Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:13.077Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:13.077Z 06b81d|OK | 181MiB/s|/app/stable-diffusion-webui/models/Stable-diffusion/v2-1_768-ema-pruned.safetensors
vnn22 2023-03-28T20:05:13.077Z
vnn22 2023-03-28T20:05:13.077Z Status Legend:
vnn22 2023-03-28T20:05:13.077Z (OK):download completed.
vnn22 2023-03-28T20:05:13.083Z
vnn22 2023-03-28T20:05:13.083Z $ download-model --checkpoint "v2-1_768-ema-pruned.yaml" "https://raw.githubusercontent.com/Stability-AI/stablediffusion/fc1488421a2761937b9d54784194157882cbc3b1/configs/stable-diffusion/v2-inference-v.yaml"
vnn22 2023-03-28T20:05:13.083Z
vnn22 2023-03-28T20:05:13.192Z
vnn22 2023-03-28T20:05:13.192Z Download Results:
vnn22 2023-03-28T20:05:13.192Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:13.192Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:13.192Z 83e630|OK | n/a|/app/stable-diffusion-webui/models/Stable-diffusion/v2-1_768-ema-pruned.yaml
vnn22 2023-03-28T20:05:13.192Z
vnn22 2023-03-28T20:05:13.192Z Status Legend:
vnn22 2023-03-28T20:05:13.192Z (OK):download completed.
vnn22 2023-03-28T20:05:13.194Z
vnn22 2023-03-28T20:05:13.194Z $ download-model --checkpoint "v1-5-pruned-emaonly.safetensors" "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/39593d5650112b4cc580433f6b0435385882d819/v1-5-pruned-emaonly.safetensors"
vnn22 2023-03-28T20:05:13.194Z
vnn22 2023-03-28T20:05:39.447Z [#1e149c 205MiB/3.9GiB(5%) CN:16 DL:254MiB ETA:15s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 532MiB/3.9GiB(13%) CN:16 DL:295MiB ETA:11s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 870MiB/3.9GiB(21%) CN:16 DL:312MiB ETA:10s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 1.1GiB/3.9GiB(29%) CN:16 DL:318MiB ETA:9s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 1.4GiB/3.9GiB(37%) CN:16 DL:321MiB ETA:7s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 1.8GiB/3.9GiB(45%) CN:16 DL:321MiB ETA:6s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 2.1GiB/3.9GiB(53%) CN:16 DL:321MiB ETA:5s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 2.4GiB/3.9GiB(61%) CN:16 DL:321MiB ETA:4s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 2.7GiB/3.9GiB(69%) CN:16 DL:321MiB ETA:3s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 3.0GiB/3.9GiB(76%) CN:16 DL:318MiB ETA:3s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 3.3GiB/3.9GiB(83%) CN:16 DL:324MiB ETA:2s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 3.6GiB/3.9GiB(91%) CN:16 DL:320MiB ETA:1s]
vnn22 2023-03-28T20:05:39.447Z [#1e149c 3.9GiB/3.9GiB(98%) CN:16 DL:316MiB]
vnn22 2023-03-28T20:05:39.447Z
vnn22 2023-03-28T20:05:39.447Z Download Results:
vnn22 2023-03-28T20:05:39.447Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:39.447Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:39.447Z 1e149c|OK | 314MiB/s|/app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors
vnn22 2023-03-28T20:05:39.447Z
vnn22 2023-03-28T20:05:39.447Z Status Legend:
vnn22 2023-03-28T20:05:39.447Z (OK):download completed.
vnn22 2023-03-28T20:05:39.450Z
vnn22 2023-03-28T20:05:39.450Z $ download-model --checkpoint "v1-5-pruned-emaonly.yaml" "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/39593d5650112b4cc580433f6b0435385882d819/v1-inference.yaml"
vnn22 2023-03-28T20:05:39.450Z
vnn22 2023-03-28T20:05:39.477Z
vnn22 2023-03-28T20:05:39.477Z Download Results:
vnn22 2023-03-28T20:05:39.477Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:39.477Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:39.477Z 44b70c|OK | n/a|/app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.yaml
vnn22 2023-03-28T20:05:39.477Z
vnn22 2023-03-28T20:05:39.477Z Status Legend:
vnn22 2023-03-28T20:05:39.477Z (OK):download completed.
vnn22 2023-03-28T20:05:39.478Z
vnn22 2023-03-28T20:05:39.479Z $ download-model --lora "epiNoiseoffset_v2.safetensors" "https://civitai.com/api/download/models/16576?type=Model&format=SafeTensor"
vnn22 2023-03-28T20:05:39.479Z
vnn22 2023-03-28T20:05:41.510Z [#543658 46MiB/77MiB(60%) CN:16 DL:78MiB]
vnn22 2023-03-28T20:05:41.510Z
vnn22 2023-03-28T20:05:41.510Z Download Results:
vnn22 2023-03-28T20:05:41.510Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:41.510Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:41.511Z 543658|OK | 50MiB/s|/app/stable-diffusion-webui/extensions/sd-webui-additional-networks/models/LoRA/epiNoiseoffset_v2.safetensors
vnn22 2023-03-28T20:05:41.511Z
vnn22 2023-03-28T20:05:41.511Z Status Legend:
vnn22 2023-03-28T20:05:41.511Z (OK):download completed.
vnn22 2023-03-28T20:05:41.513Z
vnn22 2023-03-28T20:05:41.514Z $ download-model --vae "vae-ft-mse-840000-ema-pruned.safetensors" "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/629b3ad3030ce36e15e70c5db7d91df0d60c627f/vae-ft-mse-840000-ema-pruned.safetensors"
vnn22 2023-03-28T20:05:41.514Z
vnn22 2023-03-28T20:05:43.557Z [#0a9f38 213MiB/319MiB(66%) CN:16 DL:262MiB]
vnn22 2023-03-28T20:05:43.557Z
vnn22 2023-03-28T20:05:43.557Z Download Results:
vnn22 2023-03-28T20:05:43.557Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:43.557Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:43.557Z 0a9f38|OK | 265MiB/s|/app/stable-diffusion-webui/models/VAE/vae-ft-mse-840000-ema-pruned.safetensors
vnn22 2023-03-28T20:05:43.557Z
vnn22 2023-03-28T20:05:43.557Z Status Legend:
vnn22 2023-03-28T20:05:43.557Z (OK):download completed.
vnn22 2023-03-28T20:05:43.560Z
vnn22 2023-03-28T20:05:43.560Z $ download-model --control-net "cldm_v15.yaml" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/cldm_v15.yaml"
vnn22 2023-03-28T20:05:43.560Z
vnn22 2023-03-28T20:05:43.587Z
vnn22 2023-03-28T20:05:43.587Z Download Results:
vnn22 2023-03-28T20:05:43.587Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:43.587Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:43.587Z 8f3bfd|OK | n/a|/app/stable-diffusion-webui/models/ControlNet/cldm_v15.yaml
vnn22 2023-03-28T20:05:43.587Z
vnn22 2023-03-28T20:05:43.587Z Status Legend:
vnn22 2023-03-28T20:05:43.587Z (OK):download completed.
vnn22 2023-03-28T20:05:43.589Z
vnn22 2023-03-28T20:05:43.589Z $ download-model --control-net "cldm_v21.yaml" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/cldm_v21.yaml"
vnn22 2023-03-28T20:05:43.589Z
vnn22 2023-03-28T20:05:43.618Z
vnn22 2023-03-28T20:05:43.618Z Download Results:
vnn22 2023-03-28T20:05:43.618Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:43.618Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:43.618Z e82a9b|OK | n/a|/app/stable-diffusion-webui/models/ControlNet/cldm_v21.yaml
vnn22 2023-03-28T20:05:43.618Z
vnn22 2023-03-28T20:05:43.618Z Status Legend:
vnn22 2023-03-28T20:05:43.618Z (OK):download completed.
vnn22 2023-03-28T20:05:43.619Z
vnn22 2023-03-28T20:05:43.619Z $ download-model --control-net "control_canny-fp16.safetensors" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/control_canny-fp16.safetensors"
vnn22 2023-03-28T20:05:43.619Z
vnn22 2023-03-28T20:05:49.654Z [#e0a2ac 214MiB/689MiB(31%) CN:16 DL:271MiB ETA:1s]
vnn22 2023-03-28T20:05:49.654Z [#e0a2ac 524MiB/689MiB(76%) CN:16 DL:294MiB]
vnn22 2023-03-28T20:05:49.654Z
vnn22 2023-03-28T20:05:49.654Z Download Results:
vnn22 2023-03-28T20:05:49.654Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:49.654Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:49.654Z e0a2ac|OK | 293MiB/s|/app/stable-diffusion-webui/models/ControlNet/control_canny-fp16.safetensors
vnn22 2023-03-28T20:05:49.654Z
vnn22 2023-03-28T20:05:49.654Z Status Legend:
vnn22 2023-03-28T20:05:49.654Z (OK):download completed.
vnn22 2023-03-28T20:05:49.657Z
vnn22 2023-03-28T20:05:49.657Z $ download-model --control-net "control_depth-fp16.safetensors" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/control_depth-fp16.safetensors"
vnn22 2023-03-28T20:05:49.657Z
vnn22 2023-03-28T20:05:55.702Z [#cd3e93 245MiB/689MiB(35%) CN:16 DL:285MiB ETA:1s]
vnn22 2023-03-28T20:05:55.702Z [#cd3e93 539MiB/689MiB(78%) CN:16 DL:291MiB]
vnn22 2023-03-28T20:05:55.702Z
vnn22 2023-03-28T20:05:55.702Z Download Results:
vnn22 2023-03-28T20:05:55.702Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:05:55.702Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:05:55.702Z cd3e93|OK | 282MiB/s|/app/stable-diffusion-webui/models/ControlNet/control_depth-fp16.safetensors
vnn22 2023-03-28T20:05:55.702Z
vnn22 2023-03-28T20:05:55.702Z Status Legend:
vnn22 2023-03-28T20:05:55.702Z (OK):download completed.
vnn22 2023-03-28T20:05:55.706Z
vnn22 2023-03-28T20:05:55.706Z $ download-model --control-net "control_hed-fp16.safetensors" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/control_hed-fp16.safetensors"
vnn22 2023-03-28T20:05:55.706Z
vnn22 2023-03-28T20:06:01.997Z [#9825d2 168MiB/689MiB(24%) CN:16 DL:214MiB ETA:2s]
vnn22 2023-03-28T20:06:01.997Z [#9825d2 444MiB/689MiB(64%) CN:16 DL:250MiB]
vnn22 2023-03-28T20:06:01.997Z
vnn22 2023-03-28T20:06:01.997Z Download Results:
vnn22 2023-03-28T20:06:01.997Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:06:01.997Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:06:01.997Z 9825d2|OK | 258MiB/s|/app/stable-diffusion-webui/models/ControlNet/control_hed-fp16.safetensors
vnn22 2023-03-28T20:06:01.997Z
vnn22 2023-03-28T20:06:01.997Z Status Legend:
vnn22 2023-03-28T20:06:01.997Z (OK):download completed.
vnn22 2023-03-28T20:06:02.000Z
vnn22 2023-03-28T20:06:02.000Z $ download-model --control-net "control_normal-fp16.safetensors" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/control_normal-fp16.safetensors"
vnn22 2023-03-28T20:06:02.000Z
vnn22 2023-03-28T20:06:06.466Z [#b70546 206MiB/689MiB(30%) CN:16 DL:247MiB ETA:1s]
vnn22 2023-03-28T20:06:06.466Z [#b70546 474MiB/689MiB(68%) CN:16 DL:259MiB]
vnn22 2023-03-28T20:06:06.466Z
vnn22 2023-03-28T20:06:06.466Z Download Results:
vnn22 2023-03-28T20:06:06.466Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:06:06.466Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:06:06.466Z b70546|OK | 262MiB/s|/app/stable-diffusion-webui/models/ControlNet/control_normal-fp16.safetensors
vnn22 2023-03-28T20:06:06.466Z
vnn22 2023-03-28T20:06:06.466Z Status Legend:
vnn22 2023-03-28T20:06:06.466Z (OK):download completed.
vnn22 2023-03-28T20:06:06.470Z
vnn22 2023-03-28T20:06:06.470Z $ download-model --control-net "control_scribble-fp16.safetensors" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/control_scribble-fp16.safetensors"
vnn22 2023-03-28T20:06:06.470Z
vnn22 2023-03-28T20:06:11.041Z [#fba2ab 217MiB/689MiB(31%) CN:16 DL:248MiB ETA:1s]
vnn22 2023-03-28T20:06:11.041Z [#fba2ab 476MiB/689MiB(69%) CN:16 DL:255MiB]
vnn22 2023-03-28T20:06:11.041Z
vnn22 2023-03-28T20:06:11.041Z Download Results:
vnn22 2023-03-28T20:06:11.041Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:06:11.041Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:06:11.041Z fba2ab|OK | 266MiB/s|/app/stable-diffusion-webui/models/ControlNet/control_scribble-fp16.safetensors
vnn22 2023-03-28T20:06:11.041Z
vnn22 2023-03-28T20:06:11.041Z Status Legend:
vnn22 2023-03-28T20:06:11.041Z (OK):download completed.
vnn22 2023-03-28T20:06:11.045Z
vnn22 2023-03-28T20:06:11.045Z $ download-model --control-net "control_mlsd-fp16.safetensors" "https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/87c3affbcad3baec52ffe39cac3a15a94902aed3/control_mlsd-fp16.safetensors"
vnn22 2023-03-28T20:06:11.045Z
vnn22 2023-03-28T20:06:17.305Z [#000a3a 213MiB/689MiB(31%) CN:16 DL:257MiB ETA:1s]
vnn22 2023-03-28T20:06:17.305Z [#000a3a 476MiB/689MiB(69%) CN:16 DL:261MiB]
vnn22 2023-03-28T20:06:17.305Z
vnn22 2023-03-28T20:06:17.305Z Download Results:
vnn22 2023-03-28T20:06:17.305Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:06:17.305Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:06:17.305Z 000a3a|OK | 265MiB/s|/app/stable-diffusion-webui/models/ControlNet/control_mlsd-fp16.safetensors
vnn22 2023-03-28T20:06:17.305Z
vnn22 2023-03-28T20:06:17.305Z Status Legend:
vnn22 2023-03-28T20:06:17.305Z (OK):download completed.
vnn22 2023-03-28T20:06:17.309Z
vnn22 2023-03-28T20:06:17.309Z $ download-model --embedding "bad_prompt_version2.pt" "https://huggingface.co/datasets/Nerfgun3/bad_prompt/resolve/72fd9d6011c2ba87b5847b7e45e6603917e3cbed/bad_prompt_version2.pt"
vnn22 2023-03-28T20:06:17.309Z
vnn22 2023-03-28T20:06:17.406Z
vnn22 2023-03-28T20:06:17.406Z Download Results:
vnn22 2023-03-28T20:06:17.406Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:06:17.406Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:06:17.406Z bccbed|OK | 24MiB/s|/app/stable-diffusion-webui/embeddings/bad_prompt_version2.pt
vnn22 2023-03-28T20:06:17.406Z
vnn22 2023-03-28T20:06:17.406Z Status Legend:
vnn22 2023-03-28T20:06:17.406Z (OK):download completed.
vnn22 2023-03-28T20:06:17.408Z
vnn22 2023-03-28T20:06:17.408Z $ download-model --checkpoint "deliberate_v2.safetensors" "https://civitai.com/api/download/models/15236?type=Model&format=SafeTensor"
vnn22 2023-03-28T20:06:17.408Z
vnn22 2023-03-28T20:06:33.806Z [#ba33c2 107MiB/1.9GiB(5%) CN:16 DL:185MiB ETA:10s]
vnn22 2023-03-28T20:06:33.806Z [#ba33c2 473MiB/1.9GiB(23%) CN:16 DL:301MiB ETA:5s]
vnn22 2023-03-28T20:06:33.806Z [#ba33c2 867MiB/1.9GiB(42%) CN:16 DL:339MiB ETA:3s]
vnn22 2023-03-28T20:06:33.806Z [#ba33c2 1.2GiB/1.9GiB(62%) CN:16 DL:356MiB ETA:2s]
vnn22 2023-03-28T20:06:33.806Z [#ba33c2 1.6GiB/1.9GiB(80%) CN:16 DL:361MiB ETA:1s]
vnn22 2023-03-28T20:06:33.806Z [#ba33c2 1.9GiB/1.9GiB(98%) CN:16 DL:363MiB]
vnn22 2023-03-28T20:06:33.806Z
vnn22 2023-03-28T20:06:33.806Z Download Results:
vnn22 2023-03-28T20:06:33.806Z gid |stat|avg speed |path/URI
vnn22 2023-03-28T20:06:33.806Z ======+====+===========+=======================================================
vnn22 2023-03-28T20:06:33.806Z ba33c2|OK | 343MiB/s|/app/stable-diffusion-webui/models/Stable-diffusion/deliberate_v2.safetensors
vnn22 2023-03-28T20:06:33.806Z
vnn22 2023-03-28T20:06:33.806Z Status Legend:
vnn22 2023-03-28T20:06:33.806Z (OK):download completed.
vnn22 2023-03-28T20:06:33.809Z
vnn22 2023-03-28T20:06:33.809Z ---------------
vnn22 2023-03-28T20:06:33.809Z Launching Web UI with arguments: --listen --ui-config-file ui-config.json --ui-settings-file config.json --disable-console-progressbars --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding --enable-console-prompts --no-download-sd-model --api --skip-version-check --force-enable-xformers --xformers --enable-insecure-extension-access
vnn22 2023-03-28T20:06:33.809Z ---------------
vnn22 2023-03-28T20:06:53.693Z Calculating sha256 for /app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors: 6ce0161689b3853acaa03779ec93eafe75a02f4ced659bee03f50797806fa2fa
vnn22 2023-03-28T20:06:53.693Z Loading weights [6ce0161689] from /app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors
vnn22 2023-03-28T20:06:53.957Z Creating model from config: /app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.yaml
vnn22 2023-03-28T20:06:53.958Z LatentDiffusion: Running in eps-prediction mode
vnn22 2023-03-28T20:06:54.253Z DiffusionWrapper has 859.52 M params.
vnn22 2023-03-28T20:06:54.492Z
Downloading (…)olve/main/vocab.json: 0%| | 0.00/961k [00:00<?, ?B/s]
Downloading (…)olve/main/vocab.json: 100%|██████████| 961k/961k [00:00<00:00, 126MB/s]
vnn22 2023-03-28T20:06:54.674Z
Downloading (…)olve/main/merges.txt: 0%| | 0.00/525k [00:00<?, ?B/s]
Downloading (…)olve/main/merges.txt: 100%|██████████| 525k/525k [00:00<00:00, 105MB/s]
vnn22 2023-03-28T20:06:54.841Z
Downloading (…)cial_tokens_map.json: 0%| | 0.00/389 [00:00<?, ?B/s]
Downloading (…)cial_tokens_map.json: 100%|██████████| 389/389 [00:00<00:00, 293kB/s]
vnn22 2023-03-28T20:06:55.005Z
Downloading (…)okenizer_config.json: 0%| | 0.00/905 [00:00<?, ?B/s]
Downloading (…)okenizer_config.json: 100%|██████████| 905/905 [00:00<00:00, 773kB/s]
vnn22 2023-03-28T20:06:55.233Z
Downloading (…)lve/main/config.json: 0%| | 0.00/4.52k [00:00<?, ?B/s]
Downloading (…)lve/main/config.json: 100%|██████████| 4.52k/4.52k [00:00<00:00, 3.42MB/s]
vnn22 2023-03-28T20:07:04.432Z Applying xformers cross attention optimization.
vnn22 2023-03-28T20:07:04.444Z Textual inversion embeddings loaded(1): bad_prompt_version2
vnn22 2023-03-28T20:07:04.447Z Model loaded in 24.1s (calculate hash: 13.4s, load weights from disk: 0.3s, create model: 1.6s, apply weights to model: 5.8s, apply half(): 0.8s, load VAE: 1.7s, move model to device: 0.6s).
vnn22 2023-03-28T20:07:05.583Z Running on local URL: http://0.0.0.0:7860
vnn22 2023-03-28T20:07:05.583Z
vnn22 2023-03-28T20:07:05.583Z To create a public link, set `share=True` in `launch()`.
vnn22 2023-03-28T20:07:05.671Z Startup time: 31.7s (import torch: 1.5s, import gradio: 1.4s, import ldm: 0.4s, other imports: 1.7s, setup codeformer: 0.3s, load scripts: 1.1s, load SD checkpoint: 24.3s, create ui: 0.8s, gradio launch: 0.2s).
vnn22 2023-03-28T20:07:20.805Z
vnn22 2023-03-28T20:07:20.805Z img2img: <POS PROMPT>
vnn22 2023-03-28T20:07:41.962Z
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:06<02:02, 6.44s/it]
10%|█ | 2/20 [00:06<00:52, 2.89s/it]
15%|█▌ | 3/20 [00:07<00:29, 1.76s/it]
20%|██ | 4/20 [00:07<00:19, 1.23s/it]
25%|██▌ | 5/20 [00:08<00:14, 1.06it/s]
30%|███ | 6/20 [00:08<00:10, 1.30it/s]
35%|███▌ | 7/20 [00:09<00:08, 1.50it/s]
40%|████ | 8/20 [00:09<00:07, 1.69it/s]
45%|████▌ | 9/20 [00:09<00:05, 1.84it/s]
50%|█████ | 10/20 [00:10<00:05, 1.98it/s]
55%|█████▌ | 11/20 [00:10<00:04, 2.09it/s]
60%|██████ | 12/20 [00:11<00:03, 2.18it/s]
65%|██████▌ | 13/20 [00:11<00:03, 2.24it/s]
70%|███████ | 14/20 [00:11<00:02, 2.29it/s]
75%|███████▌ | 15/20 [00:12<00:02, 2.32it/s]
80%|████████ | 16/20 [00:12<00:01, 2.35it/s]
85%|████████▌ | 17/20 [00:13<00:01, 2.36it/s]
90%|█████████ | 18/20 [00:13<00:00, 2.37it/s]
95%|█████████▌| 19/20 [00:14<00:00, 2.38it/s]
100%|██████████| 20/20 [00:14<00:00, 2.38it/s]
100%|██████████| 20/20 [00:14<00:00, 1.38it/s]
vnn22 2023-03-28T20:07:52.769Z
vnn22 2023-03-28T20:07:52.769Z img2img: <POS PROMPT>
vnn22 2023-03-28T20:08:01.479Z
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:07, 2.48it/s]
10%|█ | 2/20 [00:00<00:07, 2.45it/s]
15%|█▌ | 3/20 [00:01<00:07, 2.41it/s]
20%|██ | 4/20 [00:01<00:06, 2.41it/s]
25%|██▌ | 5/20 [00:02<00:06, 2.39it/s]
30%|███ | 6/20 [00:02<00:05, 2.40it/s]
35%|███▌ | 7/20 [00:02<00:05, 2.39it/s]
40%|████ | 8/20 [00:03<00:05, 2.39it/s]
45%|████▌ | 9/20 [00:03<00:04, 2.40it/s]
50%|█████ | 10/20 [00:04<00:04, 2.39it/s]
55%|█████▌ | 11/20 [00:04<00:03, 2.40it/s]
60%|██████ | 12/20 [00:05<00:03, 2.39it/s]
65%|██████▌ | 13/20 [00:05<00:02, 2.39it/s]
70%|███████ | 14/20 [00:05<00:02, 2.39it/s]
75%|███████▌ | 15/20 [00:06<00:02, 2.39it/s]
80%|████████ | 16/20 [00:06<00:01, 2.39it/s]
85%|████████▌ | 17/20 [00:07<00:01, 2.40it/s]
90%|█████████ | 18/20 [00:07<00:00, 2.39it/s]
95%|█████████▌| 19/20 [00:07<00:00, 2.39it/s]
100%|██████████| 20/20 [00:08<00:00, 2.39it/s]
100%|██████████| 20/20 [00:08<00:00, 2.39it/s]
vnn22 2023-03-28T20:08:27.972Z
vnn22 2023-03-28T20:08:27.972Z img2img: <POS PROMPT>
vnn22 2023-03-28T20:08:36.706Z
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:07, 2.46it/s]
10%|█ | 2/20 [00:00<00:07, 2.44it/s]
15%|█▌ | 3/20 [00:01<00:07, 2.40it/s]
20%|██ | 4/20 [00:01<00:06, 2.41it/s]
25%|██▌ | 5/20 [00:02<00:06, 2.39it/s]
30%|███ | 6/20 [00:02<00:05, 2.39it/s]
35%|███▌ | 7/20 [00:02<00:05, 2.39it/s]
40%|████ | 8/20 [00:03<00:05, 2.39it/s]
45%|████▌ | 9/20 [00:03<00:04, 2.39it/s]
50%|█████ | 10/20 [00:04<00:04, 2.39it/s]
55%|█████▌ | 11/20 [00:04<00:03, 2.39it/s]
60%|██████ | 12/20 [00:05<00:03, 2.38it/s]
65%|██████▌ | 13/20 [00:05<00:02, 2.38it/s]
70%|███████ | 14/20 [00:05<00:02, 2.39it/s]
75%|███████▌ | 15/20 [00:06<00:02, 2.38it/s]
80%|████████ | 16/20 [00:06<00:01, 2.38it/s]
85%|████████▌ | 17/20 [00:07<00:01, 2.39it/s]
90%|█████████ | 18/20 [00:07<00:00, 2.38it/s]
95%|█████████▌| 19/20 [00:07<00:00, 2.38it/s]
100%|██████████| 20/20 [00:08<00:00, 2.38it/s]
100%|██████████| 20/20 [00:08<00:00, 2.39it/s]
vnn22 2023-03-28T20:09:13.151Z
vnn22 2023-03-28T20:09:13.151Z img2img: <POS PROMPT>
vnn22 2023-03-28T20:09:13.368Z Loading model: control_depth-fp16 [400750f6]
vnn22 2023-03-28T20:09:13.435Z Loaded state_dict from [/app/stable-diffusion-webui/models/ControlNet/control_depth-fp16.safetensors]
vnn22 2023-03-28T20:09:17.664Z ControlNet model control_depth-fp16 [400750f6] loaded.
vnn22 2023-03-28T20:09:17.681Z Loading preprocessor: depth_leres
vnn22 2023-03-28T20:09:17.717Z Downloading: "https://cloudstor.aarnet.edu.au/plus/s/lTIJF4vrvHCAI31/download" to /app/stable-diffusion-webui/models/leres/download
vnn22 2023-03-28T20:09:17.717Z
vnn22 2023-03-28T20:09:56.826Z
0%| | 0.00/506M [00:00<?, ?B/s]
0%| | 16.0k/506M [00:00<2:30:26, 58.8kB/s]
0%| | 40.0k/506M [00:00<1:15:02, 118kB/s]
0%| | 72.0k/506M [00:00<57:26, 154kB/s]
0%| | 112k/506M [00:00<46:51, 189kB/s]
0%| | 144k/506M [00:00<41:07, 215kB/s]
0%| | 176k/506M [00:00<40:15, 220kB/s]
0%| | 248k/506M [00:01<26:31, 333kB/s]
0%| | 328k/506M [00:01<20:09, 439kB/s]
0%| | 424k/506M [00:01<15:35, 567kB/s]
0%| | 584k/506M [00:01<10:38, 830kB/s]
0%| | 752k/506M [00:01<08:17, 1.06MB/s]
0%| | 0.98M/506M [00:01<05:57, 1.48MB/s]
0%| | 1.33M/506M [00:01<04:15, 2.07MB/s]
0%| | 1.80M/506M [00:01<03:03, 2.88MB/s]
0%| | 2.45M/506M [00:01<02:12, 3.99MB/s]
1%| | 3.34M/506M [00:02<01:35, 5.53MB/s]
1%| | 4.50M/506M [00:02<01:10, 7.49MB/s]
1%| | 6.09M/506M [00:02<00:51, 10.2MB/s]
1%|▏ | 7.16M/506M [00:02<00:49, 10.5MB/s]
2%|▏ | 8.69M/506M [00:02<00:43, 12.1MB/s]
2%|▏ | 9.86M/506M [00:02<00:42, 12.1MB/s]
2%|▏ | 11.3M/506M [00:02<00:40, 12.9MB/s]
2%|▏ | 12.6M/506M [00:02<00:39, 13.2MB/s]
3%|▎ | 13.9M/506M [00:02<00:38, 13.4MB/s]
3%|▎ | 15.4M/506M [00:02<00:37, 13.8MB/s]
3%|▎ | 16.7M/506M [00:03<00:38, 13.4MB/s]
4%|▎ | 18.2M/506M [00:03<00:36, 14.1MB/s]
4%|▍ | 19.5M/506M [00:03<00:37, 13.5MB/s]
4%|▍ | 20.9M/506M [00:03<00:36, 13.8MB/s]
4%|▍ | 22.3M/506M [00:03<00:37, 13.6MB/s]
5%|▍ | 23.6M/506M [00:03<00:36, 13.8MB/s]
5%|▍ | 25.0M/506M [00:03<00:36, 13.8MB/s]
5%|▌ | 26.3M/506M [00:03<00:36, 13.8MB/s]
5%|▌ | 27.7M/506M [00:03<00:35, 13.9MB/s]
6%|▌ | 29.0M/506M [00:03<00:36, 13.8MB/s]
6%|▌ | 30.4M/506M [00:04<00:35, 14.0MB/s]
6%|▋ | 31.7M/506M [00:04<00:35, 13.9MB/s]
7%|▋ | 33.1M/506M [00:04<00:35, 14.0MB/s]
7%|▋ | 34.4M/506M [00:04<00:35, 13.8MB/s]
7%|▋ | 35.8M/506M [00:04<00:35, 14.0MB/s]
7%|▋ | 37.1M/506M [00:04<00:35, 13.8MB/s]
8%|▊ | 38.5M/506M [00:04<00:35, 14.0MB/s]
8%|▊ | 39.9M/506M [00:04<00:35, 13.9MB/s]
8%|▊ | 41.2M/506M [00:04<00:34, 14.0MB/s]
8%|▊ | 42.6M/506M [00:05<00:34, 14.0MB/s]
9%|▊ | 43.9M/506M [00:05<00:34, 13.9MB/s]
9%|▉ | 45.3M/506M [00:05<00:34, 14.0MB/s]
9%|▉ | 46.6M/506M [00:05<00:34, 13.9MB/s]
9%|▉ | 48.0M/506M [00:05<00:34, 13.9MB/s]
10%|▉ | 49.3M/506M [00:05<00:34, 13.9MB/s]
10%|█ | 50.7M/506M [00:05<00:34, 14.0MB/s]
10%|█ | 52.0M/506M [00:05<00:34, 13.8MB/s]
11%|█ | 53.4M/506M [00:05<00:34, 13.9MB/s]
11%|█ | 54.7M/506M [00:05<00:33, 13.9MB/s]
11%|█ | 56.1M/506M [00:06<00:34, 13.9MB/s]
11%|█▏ | 57.5M/506M [00:06<00:33, 14.1MB/s]
12%|█▏ | 58.8M/506M [00:06<00:33, 13.9MB/s]
12%|█▏ | 60.2M/506M [00:06<00:33, 14.0MB/s]
12%|█▏ | 61.5M/506M [00:06<00:33, 13.8MB/s]
12%|█▏ | 62.9M/506M [00:06<00:33, 14.0MB/s]
13%|█▎ | 64.2M/506M [00:06<00:33, 13.8MB/s]
13%|█▎ | 65.6M/506M [00:06<00:33, 13.9MB/s]
13%|█▎ | 66.9M/506M [00:06<00:33, 13.9MB/s]
13%|█▎ | 68.3M/506M [00:06<00:32, 14.0MB/s]
14%|█▍ | 69.7M/506M [00:07<00:32, 14.0MB/s]
14%|█▍ | 71.0M/506M [00:07<00:32, 13.9MB/s]
14%|█▍ | 72.4M/506M [00:07<00:32, 14.0MB/s]
15%|█▍ | 73.7M/506M [00:07<00:32, 13.9MB/s]
15%|█▍ | 75.1M/506M [00:07<00:32, 14.0MB/s]
15%|█▌ | 76.4M/506M [00:07<00:32, 13.9MB/s]
15%|█▌ | 77.8M/506M [00:07<00:32, 14.0MB/s]
16%|█▌ | 79.1M/506M [00:07<00:32, 13.8MB/s]
16%|█▌ | 80.5M/506M [00:07<00:31, 13.9MB/s]
16%|█▌ | 81.8M/506M [00:07<00:32, 13.9MB/s]
16%|█▋ | 83.2M/506M [00:08<00:31, 14.0MB/s]
17%|█▋ | 84.5M/506M [00:08<00:31, 13.9MB/s]
17%|█▋ | 85.9M/506M [00:08<00:31, 13.9MB/s]
17%|█▋ | 87.3M/506M [00:08<00:31, 14.1MB/s]
18%|█▊ | 88.6M/506M [00:08<00:31, 14.0MB/s]
18%|█▊ | 89.9M/506M [00:08<00:31, 14.0MB/s]
18%|█▊ | 91.3M/506M [00:08<00:31, 13.9MB/s]
18%|█▊ | 92.6M/506M [00:08<00:31, 14.0MB/s]
19%|█▊ | 94.0M/506M [00:08<00:31, 13.8MB/s]
19%|█▉ | 95.3M/506M [00:08<00:30, 13.9MB/s]
19%|█▉ | 96.7M/506M [00:09<00:30, 13.9MB/s]
19%|█▉ | 98.0M/506M [00:09<00:30, 14.0MB/s]
20%|█▉ | 99.4M/506M [00:09<00:30, 14.0MB/s]
20%|█▉ | 101M/506M [00:09<00:30, 13.9MB/s]
20%|██ | 102M/506M [00:09<00:30, 13.9MB/s]
20%|██ | 103M/506M [00:09<00:30, 13.9MB/s]
21%|██ | 105M/506M [00:09<00:30, 14.0MB/s]
21%|██ | 106M/506M [00:09<00:30, 13.8MB/s]
21%|██ | 107M/506M [00:09<00:29, 14.0MB/s]
21%|██▏ | 109M/506M [00:09<00:29, 13.9MB/s]
22%|██▏ | 110M/506M [00:10<00:29, 13.9MB/s]
22%|██▏ | 111M/506M [00:10<00:29, 13.9MB/s]
22%|██▏ | 113M/506M [00:10<00:29, 14.0MB/s]
23%|██▎ | 114M/506M [00:10<00:29, 14.0MB/s]
23%|██▎ | 116M/506M [00:10<00:29, 13.9MB/s]
23%|██▎ | 117M/506M [00:10<00:29, 14.0MB/s]
23%|██▎ | 118M/506M [00:10<00:29, 13.9MB/s]
24%|██▎ | 120M/506M [00:10<00:29, 14.0MB/s]
24%|██▍ | 121M/506M [00:10<00:29, 13.8MB/s]
24%|██▍ | 122M/506M [00:11<00:28, 14.0MB/s]
24%|██▍ | 124M/506M [00:11<00:28, 13.9MB/s]
25%|██▍ | 125M/506M [00:11<00:28, 13.9MB/s]
25%|██▍ | 126M/506M [00:11<00:28, 13.8MB/s]
25%|██▌ | 128M/506M [00:11<00:28, 14.0MB/s]
25%|██▌ | 129M/506M [00:11<00:28, 13.9MB/s]
26%|██▌ | 130M/506M [00:11<00:28, 13.9MB/s]
26%|██▌ | 132M/506M [00:11<00:28, 14.0MB/s]
26%|██▋ | 133M/506M [00:11<00:27, 14.0MB/s]
27%|██▋ | 134M/506M [00:11<00:27, 14.0MB/s]
27%|██▋ | 136M/506M [00:12<01:03, 6.13MB/s]
27%|██▋ | 137M/506M [00:12<00:48, 7.91MB/s]
27%|██▋ | 139M/506M [00:12<00:45, 8.50MB/s]
28%|██▊ | 140M/506M [00:12<00:37, 10.3MB/s]
28%|██▊ | 142M/506M [00:12<00:36, 10.5MB/s]
28%|██▊ | 143M/506M [00:12<00:31, 12.1MB/s]
29%|██▊ | 145M/506M [00:13<00:31, 11.9MB/s]
29%|██▉ | 146M/506M [00:13<00:28, 13.2MB/s]
29%|██▉ | 148M/506M [00:13<00:29, 12.7MB/s]
29%|██▉ | 149M/506M [00:13<00:27, 13.8MB/s]
30%|██▉ | 151M/506M [00:13<00:28, 13.1MB/s]
30%|███ | 152M/506M [00:13<00:26, 14.2MB/s]
30%|███ | 154M/506M [00:13<00:27, 13.2MB/s]
31%|███ | 155M/506M [00:13<00:28, 12.8MB/s]
31%|███ | 157M/506M [00:14<00:26, 14.0MB/s]
31%|███▏ | 158M/506M [00:14<00:27, 13.1MB/s]
32%|███▏ | 160M/506M [00:14<00:25, 14.2MB/s]
32%|███▏ | 162M/506M [00:14<00:27, 13.4MB/s]
32%|███▏ | 163M/506M [00:14<00:25, 14.4MB/s]
33%|███▎ | 165M/506M [00:14<00:26, 13.4MB/s]
33%|███▎ | 166M/506M [00:14<00:24, 14.5MB/s]
33%|███▎ | 168M/506M [00:14<00:26, 13.5MB/s]
33%|███▎ | 169M/506M [00:14<00:24, 14.5MB/s]
34%|███▎ | 171M/506M [00:15<00:26, 13.5MB/s]
34%|███▍ | 172M/506M [00:15<00:24, 14.5MB/s]
34%|███▍ | 174M/506M [00:15<00:25, 13.5MB/s]
35%|███▍ | 175M/506M [00:15<00:23, 14.5MB/s]
35%|███▍ | 177M/506M [00:15<00:25, 13.5MB/s]
35%|███▌ | 179M/506M [00:15<00:23, 14.5MB/s]
36%|███▌ | 180M/506M [00:15<00:25, 13.5MB/s]
36%|███▌ | 182M/506M [00:15<00:23, 14.5MB/s]
36%|███▌ | 183M/506M [00:16<00:25, 13.5MB/s]
36%|███▋ | 185M/506M [00:16<00:23, 14.5MB/s]
37%|███▋ | 186M/506M [00:16<00:24, 13.5MB/s]
37%|███▋ | 188M/506M [00:16<00:23, 14.5MB/s]
37%|███▋ | 189M/506M [00:16<00:24, 13.5MB/s]
38%|███▊ | 191M/506M [00:16<00:22, 14.5MB/s]
38%|███▊ | 192M/506M [00:16<00:24, 13.5MB/s]
38%|███▊ | 194M/506M [00:16<00:22, 14.5MB/s]
39%|███▊ | 195M/506M [00:16<00:24, 13.5MB/s]
39%|███▉ | 197M/506M [00:17<00:22, 14.5MB/s]
39%|███▉ | 198M/506M [00:17<00:23, 13.5MB/s]
40%|███▉ | 200M/506M [00:17<00:22, 14.5MB/s]
40%|███▉ | 202M/506M [00:17<00:23, 13.5MB/s]
40%|████ | 203M/506M [00:17<00:24, 13.2MB/s]
40%|████ | 205M/506M [00:17<00:22, 13.9MB/s]
41%|████ | 206M/506M [00:17<00:23, 13.4MB/s]
41%|████ | 208M/506M [00:17<00:22, 14.1MB/s]
41%|████▏ | 209M/506M [00:17<00:23, 13.5MB/s]
42%|████▏ | 211M/506M [00:18<00:21, 14.2MB/s]
42%|████▏ | 212M/506M [00:18<00:22, 13.5MB/s]
42%|████▏ | 214M/506M [00:18<00:21, 14.2MB/s]
42%|████▏ | 215M/506M [00:18<00:22, 13.6MB/s]
43%|████▎ | 217M/506M [00:18<00:21, 14.2MB/s]
43%|████▎ | 218M/506M [00:18<00:22, 13.6MB/s]
43%|████▎ | 220M/506M [00:18<00:21, 14.3MB/s]
44%|████▎ | 221M/506M [00:18<00:22, 13.5MB/s]
44%|████▍ | 223M/506M [00:18<00:20, 14.3MB/s]
44%|████▍ | 224M/506M [00:19<00:21, 13.6MB/s]
45%|████▍ | 225M/506M [00:19<00:20, 14.3MB/s]
45%|████▍ | 227M/506M [00:19<00:21, 13.6MB/s]
45%|████▌ | 228M/506M [00:19<00:20, 14.2MB/s]
45%|████▌ | 230M/506M [00:19<00:21, 13.5MB/s]
46%|████▌ | 231M/506M [00:19<00:20, 14.3MB/s]
46%|████▌ | 233M/506M [00:19<00:20, 13.7MB/s]
46%|████▋ | 234M/506M [00:19<00:19, 14.3MB/s]
47%|████▋ | 236M/506M [00:20<00:20, 13.5MB/s]
47%|████▋ | 237M/506M [00:20<00:19, 14.3MB/s]
47%|████▋ | 239M/506M [00:20<00:20, 13.7MB/s]
47%|████▋ | 240M/506M [00:20<00:19, 14.3MB/s]
48%|████▊ | 242M/506M [00:20<00:20, 13.6MB/s]
48%|████▊ | 243M/506M [00:20<00:19, 14.2MB/s]
48%|████▊ | 245M/506M [00:20<00:20, 13.7MB/s]
49%|████▊ | 246M/506M [00:20<00:19, 14.2MB/s]
49%|████▉ | 248M/506M [00:20<00:19, 13.7MB/s]
49%|████▉ | 249M/506M [00:21<00:18, 14.2MB/s]
50%|████▉ | 251M/506M [00:21<00:19, 13.7MB/s]
50%|████▉ | 252M/506M [00:21<00:18, 14.2MB/s]
50%|█████ | 254M/506M [00:21<00:19, 13.7MB/s]
50%|█████ | 255M/506M [00:21<00:18, 14.2MB/s]
51%|█████ | 257M/506M [00:21<00:19, 13.7MB/s]
51%|█████ | 258M/506M [00:21<00:18, 14.2MB/s]
51%|█████▏ | 260M/506M [00:21<00:18, 13.7MB/s]
52%|█████▏ | 261M/506M [00:21<00:18, 14.2MB/s]
52%|█████▏ | 263M/506M [00:22<00:18, 13.7MB/s]
52%|█████▏ | 264M/506M [00:22<00:17, 14.2MB/s]
52%|█████▏ | 266M/506M [00:22<00:18, 13.6MB/s]
53%|█████▎ | 267M/506M [00:22<00:17, 14.2MB/s]
53%|█████▎ | 269M/506M [00:22<00:18, 13.7MB/s]
53%|█████▎ | 270M/506M [00:22<00:17, 14.2MB/s]
54%|█████▎ | 272M/506M [00:22<00:18, 13.6MB/s]
54%|█████▍ | 273M/506M [00:22<00:17, 14.2MB/s]
54%|█████▍ | 275M/506M [00:22<00:17, 13.7MB/s]
55%|█████▍ | 276M/506M [00:23<00:16, 14.2MB/s]
55%|█████▍ | 278M/506M [00:23<00:17, 13.6MB/s]
55%|█████▌ | 279M/506M [00:23<00:16, 14.2MB/s]
55%|█████▌ | 281M/506M [00:23<00:17, 13.6MB/s]
56%|█████▌ | 282M/506M [00:23<00:16, 14.2MB/s]
56%|█████▌ | 284M/506M [00:23<00:17, 13.6MB/s]
56%|█████▋ | 285M/506M [00:23<00:16, 14.2MB/s]
57%|█████▋ | 287M/506M [00:23<00:16, 13.7MB/s]
57%|█████▋ | 288M/506M [00:23<00:16, 14.2MB/s]
57%|█████▋ | 290M/506M [00:24<00:16, 13.6MB/s]
57%|█████▋ | 291M/506M [00:24<00:15, 14.2MB/s]
58%|█████▊ | 292M/506M [00:24<00:16, 13.6MB/s]
58%|█████▊ | 294M/506M [00:24<00:15, 14.3MB/s]
58%|█████▊ | 295M/506M [00:24<00:16, 13.6MB/s]
59%|█████▊ | 297M/506M [00:24<00:15, 14.3MB/s]
59%|█████▉ | 298M/506M [00:24<00:16, 13.6MB/s]
59%|█████▉ | 300M/506M [00:24<00:15, 14.2MB/s]
60%|█████▉ | 301M/506M [00:24<00:15, 13.6MB/s]
60%|█████▉ | 303M/506M [00:25<00:14, 14.2MB/s]
60%|██████ | 304M/506M [00:25<00:15, 13.6MB/s]
60%|██████ | 306M/506M [00:25<00:14, 14.3MB/s]
61%|██████ | 307M/506M [00:25<00:15, 13.6MB/s]
61%|██████ | 309M/506M [00:25<00:14, 14.3MB/s]
61%|██████▏ | 310M/506M [00:25<00:15, 13.6MB/s]
62%|██████▏ | 312M/506M [00:25<00:14, 14.2MB/s]
62%|██████▏ | 313M/506M [00:25<00:14, 13.6MB/s]
62%|██████▏ | 315M/506M [00:25<00:14, 14.3MB/s]
62%|██████▏ | 316M/506M [00:26<00:14, 13.6MB/s]
63%|██████▎ | 318M/506M [00:26<00:13, 14.2MB/s]
63%|██████▎ | 319M/506M [00:26<00:14, 13.6MB/s]
63%|██████▎ | 321M/506M [00:26<00:13, 14.3MB/s]
64%|██████▎ | 322M/506M [00:26<00:14, 13.6MB/s]
64%|██████▍ | 324M/506M [00:26<00:13, 14.3MB/s]
64%|██████▍ | 325M/506M [00:26<00:13, 13.6MB/s]
65%|██████▍ | 327M/506M [00:26<00:13, 14.2MB/s]
65%|██████▍ | 328M/506M [00:26<00:13, 13.6MB/s]
65%|██████▌ | 330M/506M [00:27<00:12, 14.3MB/s]
65%|██████▌ | 331M/506M [00:27<00:13, 13.6MB/s]
66%|██████▌ | 333M/506M [00:27<00:12, 14.3MB/s]
66%|██████▌ | 334M/506M [00:27<00:13, 13.6MB/s]
66%|██████▋ | 336M/506M [00:27<00:12, 14.3MB/s]
67%|██████▋ | 337M/506M [00:27<00:13, 13.6MB/s]
67%|██████▋ | 339M/506M [00:27<00:12, 14.3MB/s]
67%|██████▋ | 340M/506M [00:27<00:12, 13.6MB/s]
68%|██████▊ | 342M/506M [00:27<00:12, 14.3MB/s]
68%|██████▊ | 343M/506M [00:28<00:12, 13.6MB/s]
68%|██████▊ | 345M/506M [00:28<00:11, 14.3MB/s]
68%|██████▊ | 346M/506M [00:28<00:12, 13.6MB/s]
69%|██████▊ | 348M/506M [00:28<00:11, 14.3MB/s]
69%|██████▉ | 349M/506M [00:28<00:12, 13.6MB/s]
69%|██████▉ | 351M/506M [00:28<00:11, 14.3MB/s]
70%|██████▉ | 352M/506M [00:28<00:11, 13.6MB/s]
70%|██████▉ | 354M/506M [00:28<00:11, 14.3MB/s]
70%|███████ | 355M/506M [00:28<00:11, 13.6MB/s]
70%|███████ | 357M/506M [00:29<00:11, 14.2MB/s]
71%|███████ | 358M/506M [00:29<00:11, 13.6MB/s]
71%|███████ | 360M/506M [00:29<00:10, 14.3MB/s]
71%|███████▏ | 361M/506M [00:29<00:11, 13.6MB/s]
72%|███████▏ | 363M/506M [00:29<00:10, 14.2MB/s]
72%|███████▏ | 364M/506M [00:29<00:10, 13.6MB/s]
72%|███████▏ | 366M/506M [00:29<00:10, 14.2MB/s]
73%|███████▎ | 367M/506M [00:29<00:10, 13.7MB/s]
73%|███████▎ | 369M/506M [00:29<00:10, 14.2MB/s]
73%|███████▎ | 370M/506M [00:30<00:10, 13.7MB/s]
73%|███████▎ | 371M/506M [00:30<00:09, 14.2MB/s]
74%|███████▎ | 373M/506M [00:30<00:10, 13.7MB/s]
74%|███████▍ | 374M/506M [00:30<00:09, 14.2MB/s]
74%|███████▍ | 376M/506M [00:30<00:10, 13.6MB/s]
75%|███████▍ | 377M/506M [00:30<00:09, 14.2MB/s]
75%|███████▍ | 379M/506M [00:30<00:09, 13.7MB/s]
75%|███████▌ | 380M/506M [00:30<00:09, 14.2MB/s]
75%|███████▌ | 382M/506M [00:30<00:09, 13.7MB/s]
76%|███████▌ | 383M/506M [00:31<00:09, 14.2MB/s]
76%|███████▌ | 385M/506M [00:31<00:09, 13.7MB/s]
76%|███████▋ | 386M/506M [00:31<00:08, 14.2MB/s]
77%|███████▋ | 388M/506M [00:31<00:09, 13.7MB/s]
77%|███████▋ | 389M/506M [00:31<00:08, 14.2MB/s]
77%|███████▋ | 391M/506M [00:31<00:08, 13.6MB/s]
78%|███████▊ | 392M/506M [00:31<00:08, 14.2MB/s]
78%|███████▊ | 394M/506M [00:31<00:08, 13.7MB/s]
78%|███████▊ | 395M/506M [00:31<00:08, 14.2MB/s]
78%|███████▊ | 397M/506M [00:32<00:08, 13.7MB/s]
79%|███████▊ | 398M/506M [00:32<00:07, 14.2MB/s]
79%|███████▉ | 400M/506M [00:32<00:08, 13.6MB/s]
79%|███████▉ | 401M/506M [00:32<00:07, 14.2MB/s]
80%|███████▉ | 403M/506M [00:32<00:07, 13.7MB/s]
80%|███████▉ | 404M/506M [00:32<00:07, 14.2MB/s]
80%|████████ | 406M/506M [00:32<00:07, 13.7MB/s]
80%|████████ | 407M/506M [00:32<00:07, 14.2MB/s]
81%|████████ | 409M/506M [00:33<00:07, 13.7MB/s]
81%|████████ | 410M/506M [00:33<00:07, 14.1MB/s]
81%|████████▏ | 412M/506M [00:33<00:07, 13.7MB/s]
82%|████████▏ | 413M/506M [00:33<00:06, 14.2MB/s]
82%|████████▏ | 415M/506M [00:33<00:07, 13.7MB/s]
82%|████████▏ | 416M/506M [00:33<00:06, 14.2MB/s]
83%|████████▎ | 418M/506M [00:33<00:06, 13.7MB/s]
83%|████████▎ | 419M/506M [00:33<00:06, 14.2MB/s]
83%|████████▎ | 421M/506M [00:33<00:06, 13.7MB/s]
83%|████████▎ | 422M/506M [00:34<00:06, 14.2MB/s]
84%|████████▎ | 424M/506M [00:34<00:06, 13.7MB/s]
84%|████████▍ | 425M/506M [00:34<00:05, 14.2MB/s]
84%|████████▍ | 427M/506M [00:34<00:06, 13.7MB/s]
85%|████████▍ | 428M/506M [00:34<00:05, 14.2MB/s]
85%|████████▍ | 430M/506M [00:34<00:05, 13.6MB/s]
85%|████████▌ | 431M/506M [00:34<00:05, 14.2MB/s]
85%|████████▌ | 433M/506M [00:34<00:05, 13.7MB/s]
86%|████████▌ | 434M/506M [00:34<00:05, 14.2MB/s]
86%|████████▌ | 436M/506M [00:35<00:05, 13.7MB/s]
86%|████████▋ | 437M/506M [00:35<00:05, 14.2MB/s]
87%|████████▋ | 439M/506M [00:35<00:05, 13.7MB/s]
87%|████████▋ | 440M/506M [00:35<00:04, 14.2MB/s]
87%|████████▋ | 441M/506M [00:35<00:04, 13.7MB/s]
88%|████████▊ | 443M/506M [00:35<00:04, 14.2MB/s]
88%|████████▊ | 444M/506M [00:35<00:04, 13.7MB/s]
88%|████████▊ | 446M/506M [00:35<00:04, 14.2MB/s]
88%|████████▊ | 447M/506M [00:35<00:04, 13.7MB/s]
89%|████████▊ | 449M/506M [00:36<00:04, 14.2MB/s]
89%|████████▉ | 450M/506M [00:36<00:04, 13.7MB/s]
89%|████████▉ | 452M/506M [00:36<00:04, 14.2MB/s]
90%|████████▉ | 453M/506M [00:36<00:04, 13.6MB/s]
90%|████████▉ | 455M/506M [00:36<00:03, 14.2MB/s]
90%|█████████ | 456M/506M [00:36<00:03, 13.7MB/s]
90%|█████████ | 458M/506M [00:36<00:03, 14.2MB/s]
91%|█████████ | 459M/506M [00:36<00:03, 13.7MB/s]
91%|█████████ | 461M/506M [00:36<00:03, 14.2MB/s]
91%|█████████▏| 462M/506M [00:37<00:03, 13.7MB/s]
92%|█████████▏| 464M/506M [00:37<00:07, 6.21MB/s]
92%|█████████▏| 465M/506M [00:37<00:05, 7.34MB/s]
92%|█████████▏| 466M/506M [00:37<00:04, 8.50MB/s]
92%|█████████▏| 468M/506M [00:37<00:04, 9.59MB/s]
93%|█████████▎| 469M/506M [00:38<00:03, 10.5MB/s]
93%|█████████▎| 470M/506M [00:38<00:03, 11.3MB/s]
93%|█████████▎| 472M/506M [00:38<00:03, 12.0MB/s]
93%|█████████▎| 473M/506M [00:38<00:02, 12.5MB/s]
94%|█████████▎| 474M/506M [00:38<00:02, 12.9MB/s]
94%|█████████▍| 476M/506M [00:38<00:02, 13.2MB/s]
94%|█████████▍| 477M/506M [00:38<00:02, 13.4MB/s]
95%|█████████▍| 478M/506M [00:38<00:02, 13.6MB/s]
95%|█████████▍| 480M/506M [00:38<00:02, 13.7MB/s]
95%|█████████▌| 481M/506M [00:38<00:01, 13.8MB/s]
95%|█████████▌| 482M/506M [00:39<00:01, 13.8MB/s]
96%|█████████▌| 484M/506M [00:39<00:01, 13.8MB/s]
96%|█████████▌| 485M/506M [00:39<00:01, 13.9MB/s]
96%|█████████▌| 486M/506M [00:39<00:01, 13.9MB/s]
96%|█████████▋| 488M/506M [00:39<00:01, 13.9MB/s]
97%|█████████▋| 489M/506M [00:39<00:01, 13.9MB/s]
97%|█████████▋| 490M/506M [00:39<00:01, 13.9MB/s]
97%|█████████▋| 492M/506M [00:39<00:01, 13.9MB/s]
97%|█████████▋| 493M/506M [00:39<00:00, 13.9MB/s]
98%|█████████▊| 494M/506M [00:39<00:00, 13.9MB/s]
98%|█████████▊| 496M/506M [00:40<00:00, 13.9MB/s]
98%|█████████▊| 497M/506M [00:40<00:00, 14.0MB/s]
98%|█████████▊| 498M/506M [00:40<00:00, 13.9MB/s]
99%|█████████▊| 500M/506M [00:40<00:00, 13.9MB/s]
99%|█████████▉| 501M/506M [00:40<00:00, 13.9MB/s]
99%|█████████▉| 502M/506M [00:40<00:00, 14.0MB/s]
100%|█████████▉| 504M/506M [00:40<00:00, 13.9MB/s]
100%|█████████▉| 505M/506M [00:40<00:00, 13.9MB/s]
100%|██████████| 506M/506M [00:40<00:00, 13.0MB/s]
vnn22 2023-03-28T20:10:16.571Z
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:01<00:26, 1.37s/it]
10%|█ | 2/20 [00:01<00:16, 1.10it/s]
15%|█▌ | 3/20 [00:02<00:12, 1.31it/s]
20%|██ | 4/20 [00:03<00:11, 1.44it/s]
25%|██▌ | 5/20 [00:03<00:09, 1.52it/s]
30%|███ | 6/20 [00:04<00:08, 1.58it/s]
35%|███▌ | 7/20 [00:04<00:08, 1.62it/s]
40%|████ | 8/20 [00:05<00:07, 1.64it/s]
45%|████▌ | 9/20 [00:06<00:06, 1.66it/s]
50%|█████ | 10/20 [00:06<00:05, 1.67it/s]
55%|█████▌ | 11/20 [00:07<00:05, 1.68it/s]
60%|██████ | 12/20 [00:07<00:04, 1.68it/s]
65%|██████▌ | 13/20 [00:08<00:04, 1.69it/s]
70%|███████ | 14/20 [00:09<00:03, 1.70it/s]
75%|███████▌ | 15/20 [00:09<00:02, 1.69it/s]
80%|████████ | 16/20 [00:10<00:02, 1.70it/s]
85%|████████▌ | 17/20 [00:10<00:01, 1.70it/s]
90%|█████████ | 18/20 [00:11<00:01, 1.70it/s]
95%|█████████▌| 19/20 [00:11<00:00, 1.70it/s]
100%|██████████| 20/20 [00:12<00:00, 1.70it/s]
100%|██████████| 20/20 [00:12<00:00, 1.59it/s]
API Call
vnn22 2023-03-28T20:12:22.503Z [ControlNet] warning: using deprecated '/controlnet/img2img' route
vnn22 2023-03-28T20:12:22.503Z [ControlNet] warning: consider using the '/sdapi/v1/img2img' route with the 'alwayson_scripts' json property instead
vnn22 2023-03-28T20:12:22.551Z Error running process: /app/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/controlnet.py
vnn22 2023-03-28T20:12:22.551Z Traceback (most recent call last):
vnn22 2023-03-28T20:12:22.551Z File "/app/stable-diffusion-webui/modules/scripts.py", line 417, in process
vnn22 2023-03-28T20:12:22.551Z script.process(p, *script_args)
vnn22 2023-03-28T20:12:22.551Z File "/app/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/controlnet.py", line 628, in process
vnn22 2023-03-28T20:12:22.551Z unit = self.parse_remote_call(p, unit, idx)
vnn22 2023-03-28T20:12:22.551Z File "/app/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/controlnet.py", line 540, in parse_remote_call
vnn22 2023-03-28T20:12:22.551Z unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
vnn22 2023-03-28T20:12:22.551Z AttributeError: 'str' object has no attribute 'enabled'
vnn22 2023-03-28T20:12:22.551Z
vnn22 2023-03-28T20:12:31.503Z
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:07, 2.41it/s]
10%|█ | 2/20 [00:00<00:07, 2.36it/s]
15%|█▌ | 3/20 [00:01<00:07, 2.34it/s]
20%|██ | 4/20 [00:01<00:06, 2.34it/s]
25%|██▌ | 5/20 [00:02<00:06, 2.33it/s]
30%|███ | 6/20 [00:02<00:05, 2.34it/s]
35%|███▌ | 7/20 [00:02<00:05, 2.33it/s]
40%|████ | 8/20 [00:03<00:05, 2.33it/s]
45%|████▌ | 9/20 [00:03<00:04, 2.32it/s]
50%|█████ | 10/20 [00:04<00:04, 2.33it/s]
55%|█████▌ | 11/20 [00:04<00:03, 2.34it/s]
60%|██████ | 12/20 [00:05<00:03, 2.33it/s]
65%|██████▌ | 13/20 [00:05<00:03, 2.33it/s]
70%|███████ | 14/20 [00:06<00:02, 2.32it/s]
75%|███████▌ | 15/20 [00:06<00:02, 2.33it/s]
80%|████████ | 16/20 [00:06<00:01, 2.33it/s]
85%|████████▌ | 17/20 [00:07<00:01, 2.32it/s]
90%|█████████ | 18/20 [00:07<00:00, 2.32it/s]
95%|█████████▌| 19/20 [00:08<00:00, 2.32it/s]
100%|██████████| 20/20 [00:08<00:00, 2.32it/s]
100%|██████████| 20/20 [00:08<00:00, 2.33it/s]
Additional information
Thank you for your amazing work on providing and maintaining this extension. It is an incredibly useful piece of software. Again: thank you.
this gives the same result (though it is unclear to me if the init image needs to be repeated in the controlnet portion)
{
"prompt": "<POS PROMPT>",
"negative_prompt": "<NEG PROMPT>",
"sampler_name": "Euler a",
"sampler_index": "Euler a",
"steps": 20,
"cfg_scale": 7,
"batch": 1,
"width": 998,
"height": 643,
"init_images": [
"base64..."
],
"seed": 3047,
"denoising_strength": 0.95,
"controlnet_units": [
{
"init_images": [
"base64..."
],
"model": "control_depth-fp16 [400750f6]",
"module": "depth_leres",
"weight": 1,
"guessmode": false,
"processor_res": 512,
"threshold_a": 0,
"threshold_b": 0
}
]
}
Can you try passing your controlnet units trought the alwayson_script param like this?
{
"prompt": "pos propmpt...",
"negative_prompt": "neg propmpt...",
"sampler_name": "Euler a",
"sampler_index": "Euler a",
"steps": 20,
"cfg_scale": 7,
"batch": 1,
"width": 998,
"height": 643,
"init_images": ["base64..."],
"seed": 3047,
"denoising_strength": 0.95,
"alwayson_scripts": {
"controlnet": {
"args": [
{
"model": "control_depth-fp16 [400750f6]",
"module": "depth_leres",
"weight": 1,
"guessmode": false,
"processor_res": 512,
"threshold_a": 0,
"threshold_b": 0
},{
"model": "control_canny-fp16 [e3fe7712]",
"module": "canny",
"weight": "0.5",
"guessmode": false,
"processor_res": 512,
"threshold_a": 100,
"threshold_b": 200
}
]
}
}
}
Really appreciate your response! I'll give it a try now.
I had switched commits. With the older commits it still doesn't work. Switching back to the new commits now and will try again.
when I use the UI I always see these lines when using controlnet
d7jj5 2023-03-28T20:47:29.734Z Loading model from cache: control_depth-fp16 [400750f6]
d7jj5 2023-03-28T20:47:29.735Z Loading preprocessor: depth_leres
but they don't show up in the logs when I call the API
Did you switch to older webui commit's or controlnet commits? I suspect the way the default values are passed here at L253 since PR #8669 of the webui doesn't play well with how controlnet is expecting it's args in it's process function. It seemed fine when I ran the unit tests, but I'll have to retest when I get to a computer with an SD installation.
Those line missing would seem to me to indicate that controlnet didn't run which would make sense with the error message you posted.
both. I switched to a9fed7c364061ae6efb37f797b6b522cb3cf7aa2 for sd-webit and 274dd5df217a03e059e9cf052447aece81bbd1cf for controlnet
Which commits did you run your tests against? I'm happy to use those. Thanks again for your help!
I am not quite sure, but just to see if the problem is isolated to the PR I linked, I would just try the latest for controlnet and the commit before the PR for the webui which would be 769def1e418c74107e4bfe1c7c990d20faed4c17
On a side note, what is the max units you have in your options?
I've been able to reproduce this for an img2img. If you have less units in your request then your max unit config, it will throw an error because the default unit that has been created by the init_default_script_args
function in the API script of the webui is a string. This is my payload for a /sdapi/v1/img2img request:
{
"prompt": "test",
"negative_prompt": "test",
"sampler_name": "Euler a",
"steps": 20,
"cfg_scale": 7,
"batch": 1,
"width": 512,
"height": 512,
"init_images": ["base64..."],
"seed": 1,
"denoising_strength": 0.75,
"alwayson_scripts": {
"controlnet": {
"args": [
{
"input_image":"base64...",
"model": "difference_controlSd15Depth",
"module": "depth_leres",
"weight": 1,
"guessmode": false,
"processor_res": 512,
"threshold_a": 0,
"threshold_b": 0
},{
"input_image":"base64...",
"model": "difference_controlSd15Canny",
"module": "canny",
"weight": 0.5,
"guessmode": false,
"processor_res": 512,
"threshold_a": 100,
"threshold_b": 200
}
]
}
}
}
The payload works for me since I have 2 max controlnet units, but if I only put one then I will get the error. Tried passing the gradio state directly in API's init_default_args but no success, currently looking at other ways to patch this but in controlnet instead. (Also for some reason txt2img worked correctly)
Adding a type check for a string in get_all_units_from
in the external_code.py function seems to be a workaround for the default unit not being the correct type
Just added an else if condition around L122
while i < len(script_args):
if type(script_args[i]) is bool:
units.append(ControlNetUnit(*script_args[i:i + PARAM_COUNT]))
i += PARAM_COUNT
elif type(script_args[i]) is str:
i += 1
else:
if script_args[i] is not None:
units.append(to_processing_unit(script_args[i]))
i += 1
Also turns out that I had in fact some test failures that I thought were due to my test environment being bad but were in fact due to this bug. With condition added in get_all_units_from
and get_single_unit_from
all 24 tests passed.
Amazing! So let me make sure I understand:
- if I make
max_units == number_units
in call it should work now - once #676 is merged it will be ok for
max_units != number_units
is that right?
Thanks again for following up on this! Really appreciate it!
Going to test this out now!
if I make max_units == number_units in call it should work now
I believe so, number_units > 0 && max_units != number_units
is how I got to reproduce it with the api request I posted.
once https://github.com/Mikubill/sd-webui-controlnet/pull/676 is merged it will be ok for max_units != number_units
That is the plan.
If you could report your tests even if they're positive that would be great!
awesome! Just got it working (even without updating the max_units
) using
sd-webui-controlnet : 241c05f8c9d3c5abe637187e3c4bb46f17447029
stable-diffusion-webui: 769def1e418c74107e4bfe1c7c990d20faed4c17
and the old syntax
{
...
"denoising_strength": 0.95,
"controlnet_units": [
{
"model": "control_depth-fp16 [400750f6]",
"module": "depth_leres",
"weight": 1,
"guessmode": false,
"processor_res": 512,
"threshold_a": 0,
"threshold_b": 0,
"enabled": "control_net_enabled"
},{
"model": "control_canny-fp16 [e3fe7712]",
"module": "canny",
"weight": "0.5",
"guessmode": false,
"processor_res": 512,
"threshold_a": 100,
"threshold_b": 200
}
]
}
Happy to test that PR tomorrow before it is merged or else the main it get's merged before that.
Thanks again for your help! You probably saved me days of headache!
That'd be great, keep in mind that if you rolled back to the webui's 769def1e418c74107e4bfe1c7c990d20faed4c17
commit then you don't need the PR and everything works as before, so if you want to test it out tomorrow you'll have to put yourself back on the latest for the webui (or at least at c7daba71dede92cc4ab219bc648776f6f7057f21
which is the webui's commit that create this behavior)
After more investigating, ended up doing a PR of the webui instead. If you could test that instead, that would be great. For some reason the self test of controlnet are throwing errors, but my little fastapi tests are working. I think the test are not constructing the args properly in their alwayon tests, which wouldn't be too much of a surprise with all the changes.
Update:
So some simple clean up of the test code in the TestAlwaysonTxt2ImgWorking
Class to make it more in line with how the args should be pass in alwayson_scripts makes all tests "pass", but setting module: "none"
in the controlnet_unit
makes all alwayson tests except the default_param one fail. That being said, looking at stderr.txt reveal that there are a lot of raise RuntimeError(f"model not found: {model}")
and preprocessor = self.preprocessor[unit.module] KeyError: None
I feel like this module/model setting weirdness was discussed with @ljleb in a discussion post. Anyway aside from that, this makes me more confident in the change.
Update 2:
Ok last update before I really need to sleep. Turns out module: "none"
is fine. The problem was me running the tests with the --use-cpu launch option. Also the default test needs "module": "none",
in it or it throws the Keyerror. So now everything passes with the complete controlnet unit.
I am still seeing RuntimeError(f"model not found: {model}")
errors in stderr.txt
but those are from the deprecated routes, the test reports pass though, very strange.
Still getting the error when calling CN with the API. This still being debugged?
Here is my json payload:
{
"init_images": [
"Base64ImageString"
],
"resize_mode": 0,
"denoising_strength": 0.6000000238418579,
"image_cfg_scale": null,
"mask": null,
"mask_blur": 4,
"inpainting_fill": 0,
"inpaint_full_res": true,
"inpaint_full_res_padding": 0,
"inpainting_mask_invert": 0,
"initial_noise_multiplier": null,
"prompt": "InputPrompt",
"styles": null,
"seed": -1,
"subseed": -1,
"subseed_strength": 0,
"seed_resize_from_h": -1,
"seed_resize_from_w": -1,
"sampler_name": "Euler a",
"batch_size": 1,
"n_iter": 1,
"steps": 30,
"cfg_scale": 7,
"width": 512,
"height": 960,
"restore_faces": false,
"tiling": false,
"do_not_save_samples": false,
"do_not_save_grid": true,
"negative_prompt": "NegativePrompt",
"eta": null,
"s_churn": 0,
"s_tmax": null,
"s_tmin": 0,
"s_noise": -1,
"override_settings": null,
"override_settings_restore_afterwards": false,
"script_args": [],
"sampler_index": "Euler",
"include_init_images": false,
"script_name": null,
"send_images": false,
"save_images": false,
"alwayson_scripts": {
"controlnet": {
"args": [
{
"input_image": "Base64ImageString",
"mask": "",
"module": "canny",
"model": "control_canny-fp16 [e3fe7712]",
"weight": 1.5,
"resize_mode": "Just Resize",
"lowvram": false,
"processor_res": 1024,
"threshold_a": 100,
"threshold_b": 200,
"guidance": 1,
"guidance_start": 0.20000000298023224,
"guidance_end": 1,
"guessmode": false
}
]
}
}
}
Waiting for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9130 to get pulled in. You can always apply the changes from that PR in your own local webui repo.
Awesome, thanks for the clarification and suggestion!
This fixed it both when I reverted to the deprecated way and in the new way. Thank you so much! Hope they merge it soon! Awesome work!