YOLOX icon indicating copy to clipboard operation
YOLOX copied to clipboard

Training AP is always 0 using coco128 dataset

Open Jessica-hub opened this issue 1 year ago • 3 comments

I used the coco128 and unzip into the datasets folder. The command is python tools/train.py -f exps/example/custom/yolox_s.py -d 1 -b 32 --fp16 -o -c C:\Users\olivi\YOLOX\pretrained\yolox_s.pth However, the APs have a lot of nan and 0. The log details are below.

2024-03-03 15:05:28 | INFO | yolox.core.trainer:130 - args: Namespace(experiment_name='yolox_s', name=None, dist_backend='nccl', dist_url=None, batch_size=32, devices=1, exp_file='exps/example/custom/yolox_s.py', resume=False, ckpt='C:\Users\olivi\YOLOX\pretrained\yolox_s.pth', start_epoch=None, num_machines=1, machine_rank=0, fp16=True, cache=None, occupy=True, logger='tensorboard', opts=[]) 2024-03-03 15:05:28 | INFO | yolox.core.trainer:131 - exp value: ╒═══════════════════╤════════════════════════════╕ │ keys │ values │ ╞═══════════════════╪════════════════════════════╡ │ seed │ None │ ├───────────────────┼────────────────────────────┤ │ output_dir │ './YOLOX_outputs' │ ├───────────────────┼────────────────────────────┤ │ print_interval │ 10 │ ├───────────────────┼────────────────────────────┤ │ eval_interval │ 1 │ ├───────────────────┼────────────────────────────┤ │ dataset │ None │ ├───────────────────┼────────────────────────────┤ │ num_classes │ 71 │ ├───────────────────┼────────────────────────────┤ │ depth │ 0.33 │ ├───────────────────┼────────────────────────────┤ │ width │ 0.5 │ ├───────────────────┼────────────────────────────┤ │ act │ 'silu' │ ├───────────────────┼────────────────────────────┤ │ data_num_workers │ 4 │ ├───────────────────┼────────────────────────────┤ │ input_size │ (640, 640) │ ├───────────────────┼────────────────────────────┤ │ multiscale_range │ 5 │ ├───────────────────┼────────────────────────────┤ │ data_dir │ 'datasets/coco128' │ ├───────────────────┼────────────────────────────┤ │ train_ann │ 'instances_train2017.json' │ ├───────────────────┼────────────────────────────┤ │ val_ann │ 'instances_val2017.json' │ ├───────────────────┼────────────────────────────┤ │ test_ann │ 'instances_test2017.json' │ ├───────────────────┼────────────────────────────┤ │ mosaic_prob │ 1.0 │ ├───────────────────┼────────────────────────────┤ │ mixup_prob │ 1.0 │ ├───────────────────┼────────────────────────────┤ │ hsv_prob │ 1.0 │ ├───────────────────┼────────────────────────────┤ │ flip_prob │ 0.5 │ ├───────────────────┼────────────────────────────┤ │ degrees │ 10.0 │ ├───────────────────┼────────────────────────────┤ │ translate │ 0.1 │ ├───────────────────┼────────────────────────────┤ │ mosaic_scale │ (0.1, 2) │ ├───────────────────┼────────────────────────────┤ │ enable_mixup │ True │ ├───────────────────┼────────────────────────────┤ │ mixup_scale │ (0.5, 1.5) │ ├───────────────────┼────────────────────────────┤ │ shear │ 2.0 │ ├───────────────────┼────────────────────────────┤ │ warmup_epochs │ 5 │ ├───────────────────┼────────────────────────────┤ │ max_epoch │ 300 │ ├───────────────────┼────────────────────────────┤ │ warmup_lr │ 0 │ ├───────────────────┼────────────────────────────┤ │ min_lr_ratio │ 0.05 │ ├───────────────────┼────────────────────────────┤ │ basic_lr_per_img │ 0.00015625 │ ├───────────────────┼────────────────────────────┤ │ scheduler │ 'yoloxwarmcos' │ ├───────────────────┼────────────────────────────┤ │ no_aug_epochs │ 15 │ ├───────────────────┼────────────────────────────┤ │ ema │ True │ ├───────────────────┼────────────────────────────┤ │ weight_decay │ 0.0005 │ ├───────────────────┼────────────────────────────┤ │ momentum │ 0.9 │ ├───────────────────┼────────────────────────────┤ │ save_history_ckpt │ True │ ├───────────────────┼────────────────────────────┤ │ exp_name │ 'yolox_s' │ ├───────────────────┼────────────────────────────┤ │ test_size │ (640, 640) │ ├───────────────────┼────────────────────────────┤ │ test_conf │ 0.01 │ ├───────────────────┼────────────────────────────┤ │ nmsthre │ 0.65 │ ╘═══════════════════╧════════════════════════════╛ qt.qpa.fonts: Unable to open default EUDC font: "EUDC.TTE" 2024-03-03 15:05:34 | INFO | yolox.core.trainer:136 - Model Summary: Params: 8.96M, Gflops: 26.91 2024-03-03 15:05:34 | INFO | yolox.core.trainer:319 - loading checkpoint for fine tuning 2024-03-03 15:05:35 | WARNING | yolox.utils.checkpoint:24 - Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([71, 128, 1, 1]). 2024-03-03 15:05:35 | WARNING | yolox.utils.checkpoint:24 - Shape of head.cls_preds.0.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.0.bias in model is torch.Size([71]). 2024-03-03 15:05:35 | WARNING | yolox.utils.checkpoint:24 - Shape of head.cls_preds.1.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.1.weight in model is torch.Size([71, 128, 1, 1]). 2024-03-03 15:05:35 | WARNING | yolox.utils.checkpoint:24 - Shape of head.cls_preds.1.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.1.bias in model is torch.Size([71]). 2024-03-03 15:05:35 | WARNING | yolox.utils.checkpoint:24 - Shape of head.cls_preds.2.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.2.weight in model is torch.Size([71, 128, 1, 1]). 2024-03-03 15:05:35 | WARNING | yolox.utils.checkpoint:24 - Shape of head.cls_preds.2.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.2.bias in model is torch.Size([71]). 2024-03-03 15:05:35 | INFO | yolox.data.datasets.coco:63 - loading annotations into memory... 2024-03-03 15:05:35 | INFO | yolox.data.datasets.coco:63 - Done (t=0.00s) 2024-03-03 15:05:35 | INFO | pycocotools.coco:86 - creating index... 2024-03-03 15:05:35 | INFO | pycocotools.coco:86 - index created! 2024-03-03 15:05:35 | INFO | yolox.core.trainer:155 - init prefetcher, this might take one minute or less... C:\Users\olivi\yolox\yolox\utils\metric.py:43: UserWarning: The torch.cuda.DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=, device='cuda') to create tensors. (Triggered internally at ..\torch\csrc\tensor\python_tensor.cpp:85.) x = torch.cuda.FloatTensor(256, 1024, block_mem) 2024-03-03 15:05:52 | INFO | yolox.data.datasets.coco:63 - loading annotations into memory... 2024-03-03 15:05:52 | INFO | yolox.data.datasets.coco:63 - Done (t=0.01s) 2024-03-03 15:05:52 | INFO | pycocotools.coco:86 - creating index... 2024-03-03 15:05:52 | INFO | pycocotools.coco:86 - index created! 2024-03-03 15:05:52 | INFO | yolox.core.trainer:191 - Training start... 2024-03-03 15:05:52 | INFO | yolox.core.trainer:192 - YOLOX( (backbone): YOLOPAFPN( (backbone): CSPDarknet( (stem): Focus( (conv): BaseConv( (conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (dark2): Sequential( (0): BaseConv( (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): CSPLayer( (conv1): BaseConv( (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (dark3): Sequential( (0): BaseConv( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): CSPLayer( (conv1): BaseConv( (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (1): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (dark4): Sequential( (0): BaseConv( (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): CSPLayer( (conv1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (1): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (dark5): Sequential( (0): BaseConv( (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): SPPBottleneck( (conv1): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): ModuleList( (0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False) (1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False) (2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False) ) (conv2): BaseConv( (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): CSPLayer( (conv1): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) ) (upsample): Upsample(scale_factor=2.0, mode='nearest') (lateral_conv0): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_p4): CSPLayer( (conv1): BaseConv( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) (reduce_conv1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_p3): CSPLayer( (conv1): BaseConv( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) (bu_conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_n3): CSPLayer( (conv1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) (bu_conv1): BaseConv( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_n4): CSPLayer( (conv1): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (head): YOLOXHead( (cls_convs): ModuleList( (0-2): 3 x Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) (reg_convs): ModuleList( (0-2): 3 x Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) (cls_preds): ModuleList( (0-2): 3 x Conv2d(128, 71, kernel_size=(1, 1), stride=(1, 1)) ) (reg_preds): ModuleList( (0-2): 3 x Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1)) ) (obj_preds): ModuleList( (0-2): 3 x Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1)) ) (stems): ModuleList( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (2): BaseConv( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (l1_loss): L1Loss() (bcewithlog_loss): BCEWithLogitsLoss() (iou_loss): IOUloss() ) ) 2024-03-03 15:05:52 | INFO | yolox.core.trainer:203 - ---> start train epoch1 2024-03-03 15:05:59 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 100%|####################################################################################| 1/1 [00:05<00:00, 5.11s/it] 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:259 - Evaluate in main process... 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:292 - Loading and preparing results... 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:292 - DONE (t=0.01s) 2024-03-03 15:06:04 | INFO | pycocotools.coco:366 - creating index... 2024-03-03 15:06:04 | INFO | pycocotools.coco:366 - index created! 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:302 - Running per image evaluation... 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:302 - Evaluate annotation type bbox 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:302 - DONE (t=0.01s). 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:303 - Accumulating evaluation results... 2024-03-03 15:06:04 | INFO | yolox.evaluators.coco_evaluator:303 - DONE (t=0.03s). 2024-03-03 15:06:04 | INFO | yolox.core.trainer:354 - Average forward time: 0.00 ms, Average NMS time: 0.00 ms, Average inference time: 0.00 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.092 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.103 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.103 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.060 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.100 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.069 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.138 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.138 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.180 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.100 per class AP:

class AP class AP class AP
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 30.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 90.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000
per class AR:
class AR class AR class AR
:-------- :------ :-------- :------- :-------- :-------
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 90.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 90.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000

2024-03-03 15:06:04 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:05 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:05 | INFO | yolox.core.trainer:203 - ---> start train epoch2 2024-03-03 15:06:07 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 100%|####################################################################################| 1/1 [00:05<00:00, 5.63s/it] 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:259 - Evaluate in main process... 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:292 - Loading and preparing results... 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:292 - DONE (t=0.01s) 2024-03-03 15:06:13 | INFO | pycocotools.coco:366 - creating index... 2024-03-03 15:06:13 | INFO | pycocotools.coco:366 - index created! 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:302 - Running per image evaluation... 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:302 - Evaluate annotation type bbox 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:302 - DONE (t=0.01s). 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:303 - Accumulating evaluation results... 2024-03-03 15:06:13 | INFO | yolox.evaluators.coco_evaluator:303 - DONE (t=0.03s). 2024-03-03 15:06:13 | INFO | yolox.core.trainer:354 - Average forward time: 0.00 ms, Average NMS time: 0.00 ms, Average inference time: 0.00 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.115 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.154 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.154 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.120 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.100 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.115 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.115 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.115 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.120 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.100 per class AP:

class AP class AP class AP
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 90.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 60.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000
per class AR:
class AR class AR class AR
:-------- :------ :-------- :------- :-------- :------
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 90.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 60.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000

2024-03-03 15:06:13 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:14 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:14 | INFO | yolox.core.trainer:203 - ---> start train epoch3 2024-03-03 15:06:20 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 100%|####################################################################################| 1/1 [00:04<00:00, 4.98s/it] 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:259 - Evaluate in main process... 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:292 - Loading and preparing results... 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:292 - DONE (t=0.01s) 2024-03-03 15:06:25 | INFO | pycocotools.coco:366 - creating index... 2024-03-03 15:06:25 | INFO | pycocotools.coco:366 - index created! 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:302 - Running per image evaluation... 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:302 - Evaluate annotation type bbox 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:302 - DONE (t=0.01s). 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:303 - Accumulating evaluation results... 2024-03-03 15:06:25 | INFO | yolox.evaluators.coco_evaluator:303 - DONE (t=0.02s). 2024-03-03 15:06:25 | INFO | yolox.core.trainer:354 - Average forward time: 0.00 ms, Average NMS time: 0.00 ms, Average inference time: 0.00 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.031 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.038 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.038 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.044 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.062 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.062 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.089 per class AP:

class AP class AP class AP
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 40.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000
per class AR:
class AR class AR class AR
:-------- :------ :-------- :------- :-------- :------
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 80.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000

2024-03-03 15:06:25 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:25 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:25 | INFO | yolox.core.trainer:203 - ---> start train epoch4 2024-03-03 15:06:28 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 100%|####################################################################################| 1/1 [00:05<00:00, 5.17s/it] 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:259 - Evaluate in main process... 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:292 - Loading and preparing results... 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:292 - DONE (t=0.01s) 2024-03-03 15:06:33 | INFO | pycocotools.coco:366 - creating index... 2024-03-03 15:06:33 | INFO | pycocotools.coco:366 - index created! 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:302 - Running per image evaluation... 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:302 - Evaluate annotation type bbox 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:302 - DONE (t=0.01s). 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:303 - Accumulating evaluation results... 2024-03-03 15:06:33 | INFO | yolox.evaluators.coco_evaluator:303 - DONE (t=0.02s). 2024-03-03 15:06:33 | INFO | yolox.core.trainer:354 - Average forward time: 0.00 ms, Average NMS time: 0.00 ms, Average inference time: 0.00 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 per class AP:

class AP class AP class AP
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 0.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000
per class AR:
class AR class AR class AR
:-------- :------ :-------- :------ :-------- :------
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 0.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000

2024-03-03 15:06:33 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:33 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:33 | INFO | yolox.core.trainer:203 - ---> start train epoch5 2024-03-03 15:06:36 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 100%|####################################################################################| 1/1 [00:05<00:00, 5.09s/it] 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:259 - Evaluate in main process... 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:292 - Loading and preparing results... 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:292 - DONE (t=0.01s) 2024-03-03 15:06:41 | INFO | pycocotools.coco:366 - creating index... 2024-03-03 15:06:41 | INFO | pycocotools.coco:366 - index created! 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:302 - Running per image evaluation... 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:302 - Evaluate annotation type bbox 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:302 - DONE (t=0.02s). 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:303 - Accumulating evaluation results... 2024-03-03 15:06:41 | INFO | yolox.evaluators.coco_evaluator:303 - DONE (t=0.03s). 2024-03-03 15:06:41 | INFO | yolox.core.trainer:354 - Average forward time: 0.00 ms, Average NMS time: 0.00 ms, Average inference time: 0.00 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 per class AP:

class AP class AP class AP
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 0.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000
per class AR:
class AR class AR class AR
:-------- :------ :-------- :------ :-------- :------
0 nan 1 nan 2 nan
3 nan 4 nan 5 nan
6 nan 7 0.000 8 nan
9 nan 10 nan 11 nan
12 nan 13 nan 14 nan
15 nan 16 nan 17 nan
18 0.000 19 nan 20 nan
21 nan 22 nan 23 nan
24 nan 25 nan 26 0.000
27 nan 28 nan 29 nan
30 nan 31 nan 32 0.000
33 nan 34 0.000 35 nan
36 nan 37 0.000 38 nan
39 nan 40 nan 41 nan
42 nan 43 nan 44 0.000
45 nan 46 nan 47 nan
48 nan 49 0.000 50 nan
51 nan 52 nan 53 nan
54 nan 55 nan 56 0.000
57 0.000 58 nan 59 nan
60 nan 61 0.000 62 nan
63 nan 64 nan 65 nan
66 nan 67 nan 68 nan
69 0.000 70 0.000

2024-03-03 15:06:41 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:42 | INFO | yolox.core.trainer:364 - Save weights to ./YOLOX_outputs\yolox_s 2024-03-03 15:06:42 | INFO | yolox.core.trainer:203 - ---> start train epoch6

Jessica-hub avatar Mar 03 '24 21:03 Jessica-hub

@Jessica-hub did you resolve this. I am also getting the same.

mahaling avatar Mar 11 '24 01:03 mahaling

me tooo. I mean I get this error with custom dataset but still it would help to know why its like this with coco

YCAyca avatar Mar 26 '24 22:03 YCAyca

Found the issue. The annotations in coco128 are incorrect, specifically the class ordering. I tried the same evaluation on the dataset downloaded from https://cocodataset.org/#download and it works perfectly fine.

ksaluja15 avatar Jul 12 '24 19:07 ksaluja15