demos
demos copied to clipboard
Connection examples: SQLalchemy boilerplate
Here is some basic boilerplate for connecting to Materialize via SQLalchemy.
from sqlalchemy import create_engine, text
from sqlalchemy.orm import sessionmaker
from dotenv import dotenv_values
from pathlib import Path
from sqlalchemy import URL
path_to_env = Path(__file__).parent.absolute() / ".env"
# Load values from .env file into config dictionary.
# See example.env for what variables you need to define.
config = dotenv_values(path_to_env)
config["options"] = ''
if config["MZ_CLUSTER"]:
config["options"] += f'--cluster={config["MZ_CLUSTER"]}'
else:
config["options"] += '--cluster=quickstart'
if config["MZ_TRANSACTION_ISOLATION"]:
config["options"] += f' -c transaction_isolation={config["MZ_TRANSACTION_ISOLATION"]}'
if config["MZ_SCHEMA"]:
config["options"] += f' -c search_path={config["MZ_SCHEMA"]}'
url = URL.create(
"postgresql+psycopg2",
database=config["MZ_DB"],
username=config["MZ_USER"],
password=config["MZ_PASSWORD"],
host=config["MZ_HOST"],
port=6875,
query={
"sslmode": "require",
"application_name": "sqlalchemy app",
"options": config["options"]
}
)
# Create an engine and metadata
engine = create_engine(
url=url,
# avoid wrapping queries in transactions
isolation_level="AUTOCOMMIT")
# Create a new session
Session = sessionmaker(bind=engine)
session = Session()
conn = session.connection()
result = conn.execute(text('select * from t'))
# Fetch all rows from the result (if you want to print the rows)
rows = result.fetchall()
for row in rows:
print(row)
# Close the session
session.close()
I made a more organized repo that we can link to:
- https://github.com/chuck-alt-delete/mz-sqlalchemy-example