minigpt4.cpp
minigpt4.cpp copied to clipboard
Port of MiniGPT4 in C++ (4bit, 5bit, 6bit, 8bit, 16bit CPU inference with GGML)
minigpt4.cpp
Inference of MiniGPT4 in pure C/C++.
Description
The main goal of minigpt4.cpp
is to run minigpt4 using 4-bit quantization with using the ggml library.
Demo
Usage
1. Clone repo
Requirements: git
git clone --recursive https://github.com/Maknee/minigpt4.cpp
cd minigpt4.cpp
2. Getting the library
Option 1: Download precompiled binary
Windows / Linux / MacOS
Go to Releases and extract minigpt4
library file into the repository directory.
Option 2: Build library manually
Windows
Requirements: CMake, Visual Studio and Git
cmake .
cmake --build . --config Release
bin\Release\minigpt4.dll
should be generated
Linux
Requirements: CMake (Ubuntu: sudo apt install cmake
)
cmake .
cmake --build . --config Release
minigpt4.so
should be generated
MacOS
Requirements: CMake (MacOS: brew install cmake
)
cmake .
cmake --build . --config Release
minigpt4.dylib
should be generated
Note: If you build with opencv (allowing features such as loading and preprocessing image within the library itself), set MINIGPT4_BUILD_WITH_OPENCV
to ON
in CMakeLists.txt
or build with -DMINIGPT4_BUILD_WITH_OPENCV=ON
as a parameter to the cmake cli.
3. Obtaining the model
Option 1: Download pre-quantized MiniGPT4 model
Pre-quantized models are available on Hugging Face ~ 7B or 13B.
Recommended for reliable results, but slow inference speed: minigpt4-13B-f16.bin
Option 2: Convert and quantize PyTorch model
Requirements: Python 3.x and PyTorch.
Clone the MiniGPT-4 repository and perform the setup
cd minigpt4
git clone https://github.com/Vision-CAIR/MiniGPT-4.git
cd MiniGPT-4
conda env create -f environment.yml
conda activate minigpt4
Download the pretrained checkpoint in the MiniGPT-4 repository under Checkpoint Aligned with Vicuna 7B
or Checkpoint Aligned with Vicuna 13B
or download them from Huggingface link for 7B or 13B
Convert the model weights into ggml format
Windows
7B model
cd minigpt4
python convert.py C:\pretrained_minigpt4_7b.pth --ftype=f16
13B model
cd minigpt4
python convert.py C:\pretrained_minigpt4.pth --ftype=f16
Linux / MacOS
7B model
python convert.py ~/Downloads/pretrained_minigpt4_7b.pth --outtype f16
13B model
python convert.py ~/Downloads/pretrained_minigpt4.pth --outtype f16
minigpt4-7B-f16.bin
or minigpt4-13B-f16.bin
should be generated
4. Obtaining the vicuna model
Option 1: Download pre-quantized vicuna-v0 model
Pre-quantized models are available on Hugging Face
Recommended for reliable results and decent inference speed: ggml-vicuna-13B-v0-q5_k.bin
Option 2: Convert and quantize vicuna-v0 model
Requirements: Python 3.x and PyTorch.
Follow the guide from the MiniGPT4 to obtain the vicuna-v0 model.
Then, clone llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
cmake .
cmake --build . --config Release
Convert the model to ggml
python convert.py <path-to-model>
Quantize the model
python quanitize <path-to-model> <output-model> Q4_1
5. Running
Test if minigpt4 works by calling the following, replacing minigpt4-13B-f16.bin
and ggml-vicuna-13B-v0-q5_k.bin
with your respective models
cd minigpt4
python minigpt4_library.py minigpt4-13B-f16.bin ggml-vicuna-13B-v0-q5_k.bin
Webui
Install the requirements for the webui
pip install -r requirements.txt
Then, run the webui, replacing minigpt4-13B-f16.bin
and ggml-vicuna-13B-v0-q5_k.bin
with your respective models
python webui.py minigpt4-13B-f16.bin ggml-vicuna-13B-v0-q5_k.bin
The output should contain something like the following:
Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`.
Go to http://127.0.0.1:7860
in your browser and you should be able to interact with the webui.