M2
M2 copied to clipboard
Negative variable degrees, incorrectly computed Ext/Cohomology
Hi all, when computing a certain Ext (a canonical module) of a homogenous equation with negative degrees, I get an unexpected zero.
i1 : S = QQ[X,T,Degrees=>{1,-1}]
o1 = S
o1 : PolynomialRing
i2 : Ext^1(S^1/ideal(X*T-1), S^1)
o2 = 0
o2 : S-module
This Ext should never be zero.
Note, if you set Degrees=>{1,-2} so it is not homogeneous, there is no problem (note, the answer should be S^1/ideal(X*T-1) up to some shift.
Doing it manually doesn't have a problem.
i1 : S = QQ[X,T,Degrees=>{1,-1}]
o1 = S
o1 : PolynomialRing
i2 : myRes = res(S^1/ideal(X*T-1))
1 1
o2 = S <-- S <-- 0
0 1 2
o2 : ChainComplex
i3 : myResDual = Hom(myRes, S^1)
1 1
o3 = 0 <-- S <-- S
-2 -1 0
o3 : ChainComplex
i4 : HH^1(myResDual)
o4 = cokernel | XT-1 |
1
o4 : S-module, quotient of S
That is, I get the right answer.