M2
M2 copied to clipboard
betti with degree 0 variables
Macaulay2 seems to give strange betti tables for modules over rings with variables of degree 0.
i1 : S = ZZ/101[x,y,Degrees => {{0},{1}}]
o1 = S
o1 : PolynomialRing
i2 : M = comodule ideal y
o2 = cokernel | y |
1
o2 : S-module, quotient of S
i3 : betti M
0 1
o3 = total: 1 1
-1: . 1
0: 1 .
o3 : BettiTally
i4 : F = prune res M
1 1
o4 = S <-- S <-- 0
0 1 2
o4 : ChainComplex
i5 : degrees F_1
o5 = {{1}}
o5 : List
It's probably related to S having no heft vector. Here is a work-around:
i2 : S = ZZ/101[x,y,Degrees => {{0},{1}}]
o2 = S
o2 : PolynomialRing
i3 : M = comodule ideal y
o3 = cokernel | y |
1
o3 : S-module, quotient of S
i4 : betti M
0 1
o4 = total: 1 1
-1: . 1
0: 1 .
o4 : BettiTally
i5 : peek oo
o5 = BettiTally{(0, {0}, 0) => 1}
(1, {1}, 0) => 1
i6 : betti(M, Weights=>{1})
0 1
o6 = total: 1 1
0: 1 1
o6 : BettiTally
i7 : peek oo
o7 = BettiTally{(0, {0}, 0) => 1}
(1, {1}, 1) => 1