nnUNet
nnUNet copied to clipboard
The program gets stuck in the CPU during prediction and cannot produce a result.
Hello @Karol-G ,
I encountered a very strange issue when using the nnUNetv2_predict command. The program can't proceed and is unable to output the prediction results. These are the results I predicted on the cloud server, `Predicting FLARE22_010: perform_everything_on_device: True 0%| | 0/360 [00:00<?, ?it/s]resizing data, order is 3 data shape (1, 227, 512, 512) 11%|████████████████████▍ | 38/360 [00:05<00:48, 6.65it/s]resizing segmentation, order is 1 order z is 0 data shape (1, 227, 512, 512) 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 360/360 [00:54<00:00, 6.60it/s] sending off prediction to background worker for resampling and export done with FLARE22_010
Predicting FLARE22_011:
perform_everything_on_device: True
38%|██████████████████████████████████████████████████████████████████████████▊ | 23/60 [00:03<00:05, 6.61it/s]resizing data, order is 1
data shape (14, 250, 628, 628)
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:08<00:00, 6.74it/s]
sending off prediction to background worker for resampling and export
done with FLARE22_011
resizing data, order is 1
data shape (14, 109, 430, 430)and these are the results I tested locally,The output is similar, but there are these two additional lines of output. Both environments are identical:torch2.0.1,cudu11.8,python3.10perform_everything_on_device: True Prediction on device was unsuccessful, probably due to a lack of memory. Moving results arrays to CPU`
The CPU and GPU are no longer occupied, and the prediction results should already be in the CPU memory, but they cannot be exported to the output folder, causing the program to freeze and become stuck. This only happens in a few cases with larger data in Abdomen CT_3D. How do you predict larger data in Abdomen CT_3D?
Originally posted by @YUjh0729 in https://github.com/MIC-DKFZ/nnUNet/issues/2091#issuecomment-2273776717