nnUNet
nnUNet copied to clipboard
RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message
I have used msd data set, and there are no problems in data set conversion and preprocessing. I don't know why it will be like this in training, can someone answer it, thank you
(bratsnnunet) PS E:\nnUNet-master> nnUNetv2_train 4 2d 0
############################ INFO: You are using the old nnU-Net default plans. We have updated our recommendations. Please consider using those instead! Read more here: https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/resenc_presets.md ############################
Using device: cuda:0
####################################################################### Please cite the following paper when using nnU-Net: Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211. #######################################################################
2024-04-21 15:19:52.712785: do_dummy_2d_data_aug: False 2024-04-21 15:19:52.713802: Creating new 5-fold cross-validation split... 2024-04-21 15:19:52.716793: Desired fold for training: 0 2024-04-21 15:19:52.716793: This split has 208 training and 52 validation cases. using pin_memory on device 0 using pin_memory on device 0 2024-04-21 15:20:11.474595: Using torch.compile... E:\anaconda3\envs\bratsnnunet\lib\site-packages\torch\optim\lr_scheduler.py:28: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate. warnings.warn("The verbose parameter is deprecated. Please use get_last_lr() "
This is the configuration used by this training: Configuration name: 2d {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 366, 'patch_size': [56, 40], 'median_image_size_in_voxels': [50.0, 35.0], 'spacing': [1.0, 1.0], 'n ormalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampli ng_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resamp ling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_clas s_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 4, 'features_per_stage': [32, 64, 128, 256], 'conv_op': 'torch.nn.modules.conv.Conv2d', 'kern el_sizes': [[3, 3], [3, 3], [3, 3], [3, 3]], 'strides': [[1, 1], [2, 2], [2, 2], [2, 2]], 'n_conv_per_stage': [2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2], 'conv_bias': True, 'norm_op': 'to rch.nn.modules.instancenorm.InstanceNorm2d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}, 'deep_supervision': True}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': True}
These are the global plan.json settings: {'dataset_name': 'Dataset004_Hippocampus', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.0, 1.0, 1.0], 'original_median_shape_after_transp': [36, 50, 35], 'image_reader_ writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_prop erties_per_channel': {'0': {'max': 486420.21875, 'mean': 22360.326171875, 'median': 362.88250732421875, 'min': 0.0, 'percentile_00_5': 28.0, 'percentile_99_5': 277682.03125, 'std': 60656.1328125}}}
2024-04-21 15:20:13.027511: unpacking dataset...
2024-04-21 15:20:13.490002: unpacking done...
2024-04-21 15:20:13.494466: Unable to plot network architecture: nnUNet_compile is enabled!
2024-04-21 15:20:13.520129:
2024-04-21 15:20:13.520129: Epoch 0
2024-04-21 15:20:13.520129: Current learning rate: 0.01
Traceback (most recent call last):
File "E:\anaconda3\envs\bratsnnunet\lib\runpy.py", line 197, in _run_module_as_main
return _run_code(code, main_globals, None,
File "E:\anaconda3\envs\bratsnnunet\lib\runpy.py", line 87, in run_code
exec(code, run_globals)
File "E:\anaconda3\envs\bratsnnunet\Scripts\nnUNetv2_train.exe_main.py", line 7, in
I'm having the same problem, probably due to the recent update, do you have any solution?
I'm having the same problem, probably due to the recent update, do you have any solution?
I feel the same way, the early April version is still working
which version is ok? i have the same problem and didn't fix it
The error message seems incomplete. Is this the entire output of the model? I cannot see an actual error that would point to the problem.
Can you try setting the environment variable nnUNet_compile=f
and try again?
Any update?