pytorch-alexnet-cifar100 icon indicating copy to clipboard operation
pytorch-alexnet-cifar100 copied to clipboard

Cifar100 in alexnet network model under the highest accuracy

pytorch-alexnet-cifar100

pytorch-alexnet-cifar100 has been deprecated. Please see AlexNet-PyTorch, which includes implementations for all models in AlexNet.

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Dropout(p=0.5)
    (1): Linear(in_features=1024, out_features=4096, bias=True)
    (2): ReLU(inplace)
    (3): Dropout(p=0.5)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace)
    (6): Linear(in_features=4096, out_features=100, bias=True)
  )
)