VitsServer
VitsServer copied to clipboard
🌻 VITS ONNX TTS server designed for fast inference 🔥
Vits-Server 🔥
⚡ A VITS ONNX server designed for fast inference, supporting streaming and additional inference settings to enable model preference settings and optimize performance.
Advantages 💪
- [x] Long Voice Generation, Support Streaming. 长语音批次推理合并。
- [x] Automatic language type parsing for text, eliminating the need for language recognition segmentation. 自动识别语言类型并处理一切。
- [x] Supports multiple audio formats, including ogg, wav, flac, and silk. 多格式返回写入。
- [x] Multiple models, streaming inference. 多模型初始化。
- [x] Additional inference settings to enable model preference settings and optimize performance. 额外的推理设置,启用模型偏好设置。
- [x] Auto Convert PTH to ONNX. 自动转换pth到onnx。
- [ ] Support for multiple languages, including Chinese, English, Japanese, and Korean. 多语言多模型合并支持(任务批次分发到不同模型)。
API Documentation 📖
We offer out-of-the-box call systems.
- Python SDK
- JavaScript SDK
client = VITS("http://127.0.0.1:9557")
res = client.generate_voice(model_id="model_01", text="你好,世界!", speaker_id=0, audio_type="wav",
length_scale=1.0, noise_scale=0.5, noise_scale_w=0.5, auto_parse=True)
with open("output.wav", "wb") as f:
for chunk in res.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
Running 🏃
We recommend using a virtual environment to isolate the runtime environment. Because this project's dependencies may
potentially disrupt your dependency library, we recommend using pipenv
to manage the dependency package.
Config Server 🐚
Configuration is in .env
, including the following fields:
VITS_SERVER_HOST=0.0.0.0
VITS_SERVER_PORT=9557
VITS_SERVER_RELOAD=false
# VITS_SERVER_WORKERS=1
# VITS_SERVER_INIT_CONFIG="https://....json"
# VITS_SERVER_INIT_MODEL="https://.....pth or onnx"
or you can use the following command to set the environment variable:
export VITS_SERVER_HOST="0.0.0.0"
export VITS_SERVER_PORT="9557"
export VITS_SERVER_RELOAD="false"
export VITS_DISABLE_GPU="false"
VITS_SERVER_RELOAD
means auto restart server when file changed.
Running from pipenv 🐍 and pm2.json 🚀
apt-get update &&
apt-get install -y build-essential libsndfile1 vim gcc g++ cmake
apt install python3-pip
pip3 install pipenv
pipenv install # Create and install dependency packages
pipenv shell # Activate the virtual environment
python3 main.py # Run
# then ctrl+c exit
apt install npm
npm install pm2 -g
pm2 start pm2.json
# then the server will run in the background
and we have a one-click script to install pipenv
and npm
:
curl -LO https://raw.githubusercontent.com/LlmKira/VitsServer/main/deploy_script.sh && chmod +x deploy_script.sh && ./deploy_script.sh
Building from Docker 🐋
we have docker pull sudoskys/vits-server:main
to docker hub.
you can also build from Dockerfile.
docker build -t <image-name> .
where <image-name>
is the name you want to give to the image. Then, use the following command to start the container:
docker run -d -p 9557:9557 -v <local-path>/vits_model:/app/model <image-name>
where <local-path>
is the local folder path you want to map to the /app/model directory in the container.
Model Configuration 📁
In the model
folder, place the model.pth
/ model.onnx
and corresponding model.json
files. If it is .pth
, it
will be automatically converted to .onnx
!
you can use .env
to set VITS_SERVER_INIT_CONFIG
and VITS_SERVER_INIT_MODEL
to download model files.
VITS_SERVER_INIT_CONFIG="https://....json"
VITS_SERVER_INIT_MODEL="https://.....pth?trace=233 or onnx?trace=233"
model
folder structure:
.
├── 1000_epochs.json
├── 1000_epochs.onnx
├── 1000_epochs.pth
├── 233_epochs.json
├── 233_epochs.onnx
└── 233_epochs.pth
Model ID
is 1000_epochs
and 233_epochs
.
when you put model files in the model
folder, you should restart the server.
Model Extension Design 🔍
You can add extra fields in the model configuration to obtain information such as the model name corresponding to the model ID through the API.
{
//...
"info": {
"name": "coco",
"description": "a vits model",
"author": "someone",
"cover": "https://xxx.com/xxx.jpg",
"email": "[email protected]"
},
"infer": {
"noise_scale": 0.667,
"length_scale": 1.0,
"noise_scale_w": 0.8
}
//....
}
infer
is the default(prefer) inference settings for the model.
info
is the model information.
How can I retrieve these model information?
You can access {your_base_url}/model/list?show_speaker=True&show_ms_config=True
to obtain detailed information about
model roles and configurations.
TODO 📝
- [ ] Test Silk format
- [x] Docker for automatic deployment
- [x] Shell script for automatic deployment
Acknowledgements 🙏
We would like to acknowledge the contributions of the following projects in the development of this project:
- MoeGoe: https://github.com/CjangCjengh/MoeGoe
- vits_with_chatbot: https://huggingface.co/Mahiruoshi/vits_with_chatbot
- vits: https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer
- espnet: https://github.com/espnet/espnet_onnx
- onnxruntime: https://onnxruntime.ai/