lightning-bolts
lightning-bolts copied to clipboard
Major revision of Bolts
Let's revision Bolts and breathe some fresh air into them! As outlined in #819 and on a Slack channel, we will revisit every single feature within Bolts.
Please sign up for a feature which you'd like to tackle. Once you do so, I will attach your name in the list and you will be expected to open a PR within two weeks. It might be useful to tackle multiple things at once as the feature list is everything top-level from the repository.
Criteria
The criteria for acceptance are simple:
- Feature has to be properly tested. Unit tests are essential, integration tests are also good, but we understand there might be situations when they are impossible.
- Feature has to be compatible with the latest set of Lightning libraries (lightning, flash, torchmetrics). This fact is also tested. This also means outputting things in formats consumable by other projects, namely Flash.
- Feature cannot be duplicated across our codebase, codebase of other Lightning projects and other more mature OSS projects. For example, there are currently five functions/classes that implement conv3x3 in this repository.
- Feature does not raise any warnings in tests. For this, there is a pytest fixture in #844 (please, read https://github.com/Lightning-AI/lightning-bolts/issues/839#issuecomment-1196540011 for the better understanding)
- And of course, once you're done, remove the decorator
@under_review
from the selected feature :tada:
List of features to be reviewed
Features
- [x]
pl_bolts.callbacks.byol_updates.BYOLMAWeightUpdate
@matsumotosan #867 - [ ]
pl_bolts.callbacks.data_monitor.DataMonitorBase
@luca-medeiros #848 - [ ]
pl_bolts.callbacks.data_monitor.ModuleDataMonitor
@luca-medeiros #848 - [ ]
pl_bolts.callbacks.data_monitor.shape2str
@luca-medeiros #848 - [ ]
pl_bolts.callbacks.data_monitor.TrainingDataMonitor
@luca-medeiros #848 - [ ]
pl_bolts.callbacks.knn_online.concat_all_gather
- [ ]
pl_bolts.callbacks.knn_online.KNNOnlineEvaluator
- [ ]
pl_bolts.callbacks.printing.dicts_to_table
- [ ]
pl_bolts.callbacks.printing.PrintTableMetricsCallback
- [ ]
pl_bolts.callbacks.sparseml.SparseMLCallback
- [ ]
pl_bolts.callbacks.ssl_online.set_training
- [ ]
pl_bolts.callbacks.ssl_online.SSLOnlineEvaluator
- [ ]
pl_bolts.callbacks.torch_ort.ORTCallback
- [ ]
pl_bolts.callbacks.variational.LatentDimInterpolator
- [ ]
pl_bolts.callbacks.verification.base.VerificationBase
- [ ]
pl_bolts.callbacks.verification.base.VerificationCallbackBase
- [ ]
pl_bolts.callbacks.verification.batch_gradient.BatchGradientVerification
- [ ]
pl_bolts.callbacks.verification.batch_gradient.BatchGradientVerificationCallback
- [ ]
pl_bolts.callbacks.verification.batch_gradient.collect_tensors
- [ ]
pl_bolts.callbacks.verification.batch_gradient.default_input_mapping
- [ ]
pl_bolts.callbacks.verification.batch_gradient.default_output_mapping
- [ ]
pl_bolts.callbacks.verification.batch_gradient.selective_eval
- [ ]
pl_bolts.callbacks.vision.confused_logit.ConfusedLogitCallback
- [ ]
pl_bolts.callbacks.vision.image_generation.TensorboardGenerativeModelImageSampler
- [ ]
pl_bolts.callbacks.vision.sr_image_logger.SRImageLoggerCallback
- [ ]
pl_bolts.datamodules.async_dataloader.AsynchronousLoader
- [x]
pl_bolts.datamodules.binary_emnist_datamodule.BinaryEMNISTDataModule
@matsumotosan #866 - [x]
pl_bolts.datamodules.binary_mnist_datamodule.BinaryMNISTDataModule
@matsumotosan #866 - [x]
pl_bolts.datamodules.cifar10_datamodule.CIFAR10DataModule
@shivammehta007 #843 - [x]
pl_bolts.datamodules.cifar10_datamodule.TinyCIFAR10DataModule
@shivammehta007 #843 - [ ]
pl_bolts.datamodules.cityscapes_datamodule.CityscapesDataModule
@lijm1358 - [x]
pl_bolts.datamodules.emnist_datamodule.EMNISTDataModule
@matsumotosan #871 - [ ]
pl_bolts.datamodules.experience_source.BaseExperienceSource
- [ ]
pl_bolts.datamodules.experience_source.DiscountedExperienceSource
- [ ]
pl_bolts.datamodules.experience_source.ExperienceSource
- [ ]
pl_bolts.datamodules.experience_source.ExperienceSourceDataset
- [x]
pl_bolts.datamodules.fashion_mnist_datamodule.FashionMNISTDataModule
@matsumotosan #871 - [ ]
pl_bolts.datamodules.imagenet_datamodule.ImagenetDataModule
- [ ]
pl_bolts.datamodules.kitti_datamodule.KittiDataModule
@wonbbnote - [x]
pl_bolts.datamodules.mnist_datamodule.MNISTDataModule
@shivammehta007 #843 - [ ]
pl_bolts.datamodules.sklearn_datamodule.SklearnDataModule
@Ce11an ~#846~ - [ ]
pl_bolts.datamodules.sklearn_datamodule.SklearnDataset
@Ce11an ~#846~ - [x]
pl_bolts.datamodules.sklearn_datamodule.TensorDataset
@Ce11an ~#846~ #872 - [ ]
pl_bolts.datamodules.sr_datamodule.TVTDataModule
- [ ]
pl_bolts.datamodules.ssl_imagenet_datamodule.SSLImagenetDataModule
- [ ]
pl_bolts.datamodules.stl10_datamodule.STL10DataModule
- [x]
pl_bolts.datamodules.vision_datamodule.VisionDataModule
@shivammehta007 #843 - [ ]
pl_bolts.datamodules.vocdetection_datamodule._prepare_voc_instance
- [ ]
pl_bolts.datamodules.vocdetection_datamodule.Compose
- [ ]
pl_bolts.datamodules.vocdetection_datamodule.VOCDetectionDataModule
- [x]
pl_bolts.datasets.base_dataset.LightDataset
- [ ]
pl_bolts.datasets.cifar10_dataset.CIFAR10
@BaruchG ~#858~ - [ ]
pl_bolts.datasets.cifar10_dataset.TrialCIFAR10
@BaruchG ~#858~ - [ ]
pl_bolts.datasets.concat_dataset.ConcatDataset
- [x]
pl_bolts.datasets.dummy_dataset.DummyDataset
@nishantb06 #865 - [x]
pl_bolts.datasets.dummy_dataset.DummyDetectionDataset
@nishantb06 #865 - [x]
pl_bolts.datasets.dummy_dataset.RandomDataset
@nishantb06 #865 - [x]
pl_bolts.datasets.dummy_dataset.RandomDictDataset
@nishantb06 #865 - [x]
pl_bolts.datasets.dummy_dataset.RandomDictStringDataset
@nishantb06 #865 - [x]
pl_bolts.datasets.emnist_dataset.BinaryEMNIST
@matsumotosan #866 - [ ]
pl_bolts.datasets.imagenet_dataset._calculate_md5
- [ ]
pl_bolts.datasets.imagenet_dataset._check_integrity
- [ ]
pl_bolts.datasets.imagenet_dataset._check_md5
- [ ]
pl_bolts.datasets.imagenet_dataset._is_gzip
- [ ]
pl_bolts.datasets.imagenet_dataset._is_tar
- [ ]
pl_bolts.datasets.imagenet_dataset._is_targz
- [ ]
pl_bolts.datasets.imagenet_dataset._is_tarxz
- [ ]
pl_bolts.datasets.imagenet_dataset._is_zip
- [ ]
pl_bolts.datasets.imagenet_dataset._verify_archive
- [ ]
pl_bolts.datasets.imagenet_dataset.extract_archive
- [ ]
pl_bolts.datasets.imagenet_dataset.parse_devkit_archive
- [ ]
pl_bolts.datasets.imagenet_dataset.UnlabeledImagenet
- [x]
pl_bolts.datasets.kitti_dataset.KittiDataset
@lijm1358 #896 - [x]
pl_bolts.datasets.mnist_dataset.BinaryMNIST
@matsumotosan #866 - [ ]
pl_bolts.datasets.sr_celeba_dataset.SRCelebA
- [ ]
pl_bolts.datasets.sr_dataset_mixin.SRDatasetMixin
- [ ]
pl_bolts.datasets.sr_mnist_dataset.SRMNIST
- [ ]
pl_bolts.datasets.sr_stl10_dataset.SRSTL10
- [ ]
pl_bolts.datasets.ssl_amdim_datasets.CIFAR10Mixed
- [ ]
pl_bolts.datasets.ssl_amdim_datasets.SSLDatasetMixin
- [ ]
pl_bolts.datasets.utils.prepare_sr_datasets
- [ ]
pl_bolts.losses.object_detection.giou_loss
- [ ]
pl_bolts.losses.object_detection.iou_loss
- [ ]
pl_bolts.losses.rl.double_dqn_loss
- [ ]
pl_bolts.losses.rl.dqn_loss
- [ ]
pl_bolts.losses.rl.per_dqn_loss
- [ ]
pl_bolts.losses.self_supervised_learning.AmdimNCELoss
- [ ]
pl_bolts.losses.self_supervised_learning.CPCTask
- [ ]
pl_bolts.losses.self_supervised_learning.FeatureMapContrastiveTask
- [ ]
pl_bolts.losses.self_supervised_learning.nt_xent_loss
- [ ]
pl_bolts.losses.self_supervised_learning.tanh_clip
- [x]
pl_bolts.metrics.aggregation.accuracy
@BaruchG #878 - [x]
pl_bolts.metrics.aggregation.mean
@BaruchG #878 - [x]
pl_bolts.metrics.aggregation.precision_at_k
@BaruchG #878 - [ ]
pl_bolts.metrics.object_detection.giou
@BaruchG - [ ]
pl_bolts.metrics.object_detection.iou
@BaruchG - [ ]
pl_bolts.models.autoencoders.basic_ae.basic_ae_module.AE
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.basic_ae.basic_ae_module.cli_main
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.basic_vae.basic_vae_module.cli_main
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.basic_vae.basic_vae_module.VAE
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.conv1x1
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.conv3x3
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.DecoderBlock
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.DecoderBottleneck
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.EncoderBlock
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.EncoderBottleneck
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.Interpolate
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.resize_conv1x1
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.resize_conv3x3
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.resnet18_decoder
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.resnet18_encoder
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.resnet50_decoder
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.resnet50_encoder
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.ResNetDecoder
@krishnakalyan3 - [ ]
pl_bolts.models.autoencoders.components.ResNetEncoder
@krishnakalyan3 - [ ]
pl_bolts.models.detection.components.torchvision_backbones._create_backbone_adaptive
- [ ]
pl_bolts.models.detection.components.torchvision_backbones._create_backbone_features
- [ ]
pl_bolts.models.detection.components.torchvision_backbones._create_backbone_generic
- [ ]
pl_bolts.models.detection.components.torchvision_backbones.create_torchvision_backbone
- [ ]
pl_bolts.models.detection.faster_rcnn.backbones.create_fasterrcnn_backbone
- [ ]
pl_bolts.models.detection.faster_rcnn.faster_rcnn_module._evaluate_iou
- [ ]
pl_bolts.models.detection.faster_rcnn.faster_rcnn_module.FasterRCNN
- [ ]
pl_bolts.models.detection.faster_rcnn.faster_rcnn_module.run_cli
- [ ]
pl_bolts.models.detection.retinanet.backbones.create_retinanet_backbone
- [ ]
pl_bolts.models.detection.retinanet.retinanet_module.cli_main
- [ ]
pl_bolts.models.detection.retinanet.retinanet_module.RetinaNet
- [ ]
pl_bolts.models.detection.yolo.yolo_config._create_convolutional
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config._create_layer
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config._create_maxpool
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config._create_route
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config._create_shortcut
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config._create_upsample
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config._create_yolo
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_config.YOLOConfiguration
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers._aligned_iou
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers._corner_coordinates
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.DetectionLayer
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.GIoULoss
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.IoULoss
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.Mish
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.RouteLayer
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.SELoss
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_layers.ShortcutLayer
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_module.Resize
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_module.run_cli
@heimish-kyma #851 - [ ]
pl_bolts.models.detection.yolo.yolo_module.YOLO
@heimish-kyma #851 - [x]
pl_bolts.models.gans.basic.basic_gan_module.cli_main
@shivammehta007 #843 - [x]
pl_bolts.models.gans.basic.basic_gan_module.GAN
@shivammehta007 #843 - [x]
pl_bolts.models.gans.basic.components.Discriminator
@shivammehta007 #843 - [x]
pl_bolts.models.gans.basic.components.Generator
@shivammehta007 #843 - [x]
pl_bolts.models.gans.dcgan.components.DCGANDiscriminator
@Atharva-Phatak #921 - [x]
pl_bolts.models.gans.dcgan.components.DCGANGenerator
@Atharva-Phatak #921 - [x]
pl_bolts.models.gans.dcgan.dcgan_module.cli_main
@Atharva-Phatak #921 - [x]
pl_bolts.models.gans.dcgan.dcgan_module.DCGAN
@Atharva-Phatak #921 - [ ]
pl_bolts.models.gans.pix2pix.components.DownSampleConv
@BongYang #883 - [ ]
pl_bolts.models.gans.pix2pix.components.Generator
@BongYang #883 - [ ]
pl_bolts.models.gans.pix2pix.components.PatchGAN
@BongYang #883 - [ ]
pl_bolts.models.gans.pix2pix.components.UpSampleConv
@BongYang #883 - [ ]
pl_bolts.models.gans.pix2pix.pix2pix_module._weights_init
@BongYang #883 - [ ]
pl_bolts.models.gans.pix2pix.pix2pix_module.Pix2Pix
@BongYang #883 - [ ]
pl_bolts.models.gans.srgan.components.ResidualBlock
- [ ]
pl_bolts.models.gans.srgan.components.SRGANDiscriminator
- [ ]
pl_bolts.models.gans.srgan.components.SRGANGenerator
- [ ]
pl_bolts.models.gans.srgan.components.VGG19FeatureExtractor
- [ ]
pl_bolts.models.gans.srgan.srgan_module.cli_main
- [ ]
pl_bolts.models.gans.srgan.srgan_module.SRGAN
- [ ]
pl_bolts.models.gans.srgan.srresnet_module.cli_main
- [ ]
pl_bolts.models.gans.srgan.srresnet_module.SRResNet
- [x]
pl_bolts.models.mnist_module.cli_main
@matsumotosan #873 - [x]
pl_bolts.models.mnist_module.LitMNIST
@matsumotosan #873 - [ ]
pl_bolts.models.regression.linear_regression.cli_main
@Ce11an - [ ]
pl_bolts.models.regression.linear_regression.LinearRegression
@Ce11an - [ ]
pl_bolts.models.regression.logistic_regression.cli_main
@Ce11an - [ ]
pl_bolts.models.regression.logistic_regression.LogisticRegression
@Ce11an - [ ]
pl_bolts.models.rl.advantage_actor_critic_model.AdvantageActorCritic
- [ ]
pl_bolts.models.rl.advantage_actor_critic_model.cli_main
- [ ]
pl_bolts.models.rl.common.agents.ActorCriticAgent
@BaruchG - [ ]
pl_bolts.models.rl.common.agents.Agent
@BaruchG - [ ]
pl_bolts.models.rl.common.agents.PolicyAgent
@BaruchG - [ ]
pl_bolts.models.rl.common.agents.SoftActorCriticAgent
@BaruchG - [ ]
pl_bolts.models.rl.common.agents.ValueAgent
@BaruchG - [ ]
pl_bolts.models.rl.common.cli.add_base_args
@BaruchG - [ ]
pl_bolts.models.rl.common.distributions.TanhMultivariateNormal
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.BufferWrapper
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.DataAugmentation
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.FireResetEnv
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.ImageToPyTorch
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.make_environment
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.MaxAndSkipEnv
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.ProcessFrame84
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.ScaledFloatFrame
@BaruchG - [ ]
pl_bolts.models.rl.common.gym_wrappers.ToTensor
@BaruchG - [ ]
pl_bolts.models.rl.common.memory.Buffer
@BaruchG - [ ]
pl_bolts.models.rl.common.memory.MeanBuffer
@BaruchG - [ ]
pl_bolts.models.rl.common.memory.MultiStepBuffer
@BaruchG - [ ]
pl_bolts.models.rl.common.memory.PERBuffer
@BaruchG - [ ]
pl_bolts.models.rl.common.memory.ReplayBuffer
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.ActorCategorical
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.ActorContinous
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.ActorCriticMLP
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.CNN
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.ContinuousMLP
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.DuelingCNN
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.DuelingMLP
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.MLP
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.NoisyCNN
@BaruchG - [ ]
pl_bolts.models.rl.common.networks.NoisyLinear
@BaruchG - [ ]
pl_bolts.models.rl.double_dqn_model.cli_main
- [ ]
pl_bolts.models.rl.double_dqn_model.DoubleDQN
@andrewaf1 - [ ]
pl_bolts.models.rl.dqn_model.cli_main
- [ ]
pl_bolts.models.rl.dqn_model.DQN
- [ ]
pl_bolts.models.rl.dueling_dqn_model.cli_main
- [ ]
pl_bolts.models.rl.dueling_dqn_model.DuelingDQN
- [ ]
pl_bolts.models.rl.noisy_dqn_model.cli_main
- [ ]
pl_bolts.models.rl.noisy_dqn_model.NoisyDQN
- [ ]
pl_bolts.models.rl.per_dqn_model.cli_main
- [ ]
pl_bolts.models.rl.per_dqn_model.PERDQN
- [ ]
pl_bolts.models.rl.ppo_model.cli_main
- [ ]
pl_bolts.models.rl.ppo_model.PPO
- [ ]
pl_bolts.models.rl.reinforce_model.cli_main
- [ ]
pl_bolts.models.rl.reinforce_model.Reinforce
- [ ]
pl_bolts.models.rl.sac_model.cli_main
- [ ]
pl_bolts.models.rl.sac_model.SAC
- [ ]
pl_bolts.models.rl.vanilla_policy_gradient_model.cli_main
- [ ]
pl_bolts.models.rl.vanilla_policy_gradient_model.VanillaPolicyGradient
- [ ]
pl_bolts.models.self_supervised.amdim.amdim_module.AMDIM
- [ ]
pl_bolts.models.self_supervised.amdim.amdim_module.cli_main
- [ ]
pl_bolts.models.self_supervised.amdim.amdim_module.generate_power_seq
- [ ]
pl_bolts.models.self_supervised.amdim.datasets.AMDIMPatchesPretraining
- [ ]
pl_bolts.models.self_supervised.amdim.datasets.AMDIMPretraining
- [ ]
pl_bolts.models.self_supervised.amdim.networks.AMDIMEncoder
- [ ]
pl_bolts.models.self_supervised.amdim.networks.Conv3x3
- [ ]
pl_bolts.models.self_supervised.amdim.networks.ConvResBlock
- [ ]
pl_bolts.models.self_supervised.amdim.networks.ConvResNxN
- [ ]
pl_bolts.models.self_supervised.amdim.networks.FakeRKHSConvNet
- [ ]
pl_bolts.models.self_supervised.amdim.networks.MaybeBatchNorm2d
- [ ]
pl_bolts.models.self_supervised.amdim.networks.NopNet
- [ ]
pl_bolts.models.self_supervised.amdim.transforms.AMDIMEvalTransformsCIFAR10
- [ ]
pl_bolts.models.self_supervised.amdim.transforms.AMDIMEvalTransformsImageNet128
- [ ]
pl_bolts.models.self_supervised.amdim.transforms.AMDIMEvalTransformsSTL10
- [ ]
pl_bolts.models.self_supervised.amdim.transforms.AMDIMTrainTransformsCIFAR10
- [ ]
pl_bolts.models.self_supervised.amdim.transforms.AMDIMTrainTransformsImageNet128
- [ ]
pl_bolts.models.self_supervised.amdim.transforms.AMDIMTrainTransformsSTL10
- [x]
pl_bolts.models.self_supervised.byol.byol_module.BYOL
@matsumotosan #874 - [x]
pl_bolts.models.self_supervised.byol.byol_module.cli_main
@matsumotosan #874 - [x]
pl_bolts.models.self_supervised.byol.models.MLP
@matsumotosan #874 - [x]
pl_bolts.models.self_supervised.byol.models.SiameseArm
@matsumotosan #874 - [ ]
pl_bolts.models.self_supervised.cpc.cpc_finetuner.cli_main
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.cpc_module.cli_main
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.cpc_module.CPC_v2
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.networks.conv1x1
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.networks.conv3x3
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.networks.cpc_resnet101
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.networks.cpc_resnet50
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.networks.CPCResNet
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.networks.LNBottleneck
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.transforms.CPCEvalTransformsCIFAR10
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.transforms.CPCEvalTransformsImageNet128
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.transforms.CPCEvalTransformsSTL10
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.transforms.CPCTrainTransformsCIFAR10
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.transforms.CPCTrainTransformsImageNet128
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.cpc.transforms.CPCTrainTransformsSTL10
@matsumotosan #902 - [ ]
pl_bolts.models.self_supervised.evaluator.Flatten
- [ ]
pl_bolts.models.self_supervised.evaluator.SSLEvaluator
- [ ]
pl_bolts.models.self_supervised.moco.callbacks.MocoLRScheduler
- [ ]
pl_bolts.models.self_supervised.moco.moco2_module.cli_main
- [ ]
pl_bolts.models.self_supervised.moco.moco2_module.concat_all_gather
- [ ]
pl_bolts.models.self_supervised.moco.moco2_module.Moco_v2
- [ ]
pl_bolts.models.self_supervised.moco.transforms.GaussianBlur
- [ ]
pl_bolts.models.self_supervised.moco.transforms.Moco2EvalCIFAR10Transforms
- [ ]
pl_bolts.models.self_supervised.moco.transforms.Moco2EvalImagenetTransforms
- [ ]
pl_bolts.models.self_supervised.moco.transforms.Moco2EvalSTL10Transforms
- [ ]
pl_bolts.models.self_supervised.moco.transforms.Moco2TrainCIFAR10Transforms
- [ ]
pl_bolts.models.self_supervised.moco.transforms.Moco2TrainImagenetTransforms
- [ ]
pl_bolts.models.self_supervised.moco.transforms.Moco2TrainSTL10Transforms
- [ ]
pl_bolts.models.self_supervised.resnets._resnet
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.BasicBlock
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.Bottleneck
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.conv1x1
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.conv3x3
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.ResNet
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnet101
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnet152
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnet18
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnet34
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnet50
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnext101_32x8d
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.resnext50_32x4d
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.wide_resnet101_2
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.resnets.wide_resnet50_2
@luca-medeiros - [ ]
pl_bolts.models.self_supervised.simclr.simclr_finetuner.cli_main
@ArnolFokam - [ ]
pl_bolts.models.self_supervised.simclr.simclr_module.cli_main
@ArnolFokam - [ ]
pl_bolts.models.self_supervised.simclr.simclr_module.Projection
@ArnolFokam - [ ]
pl_bolts.models.self_supervised.simclr.simclr_module.SimCLR
@ArnolFokam - [ ]
pl_bolts.models.self_supervised.simclr.simclr_module.SyncFunction
@ArnolFokam - [x]
pl_bolts.models.self_supervised.simclr.transforms.GaussianBlur
@ArnolFokam #857 - [x]
pl_bolts.models.self_supervised.simclr.transforms.SimCLREvalDataTransform
@ArnolFokam #857 - [x]
pl_bolts.models.self_supervised.simclr.transforms.SimCLRFinetuneTransform
@ArnolFokam #857 - [x]
pl_bolts.models.self_supervised.simclr.transforms.SimCLRTrainDataTransform
@ArnolFokam #857 - [x]
pl_bolts.models.self_supervised.simsiam.models.MLP
@matsumotosan #891 - [x]
pl_bolts.models.self_supervised.simsiam.models.SiameseArm
@matsumotosan #891 - [x]
pl_bolts.models.self_supervised.simsiam.simsiam_module.cli_main
@matsumotosan #891 - [x]
pl_bolts.models.self_supervised.simsiam.simsiam_module.SimSiam
@matsumotosan #891 - [x]
pl_bolts.models.self_supervised.ssl_finetuner.SSLFineTuner
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_finetuner.cli_main
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_module.cli_main
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_module.SwAV
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.BasicBlock
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.Bottleneck
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.conv1x1
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.conv3x3
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.MultiPrototypes
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.ResNet
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.resnet18
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.resnet50
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.resnet50w2
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.resnet50w4
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.swav_resnet.resnet50w5
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.transforms.GaussianBlur
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.transforms.SwAVEvalDataTransform
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.transforms.SwAVFinetuneTransform
@Atharva-Phatak #903 - [x]
pl_bolts.models.self_supervised.swav.transforms.SwAVTrainDataTransform
@Atharva-Phatak #903 - [ ]
pl_bolts.models.vision.image_gpt.gpt2.Block
@nishantb06 - [ ]
pl_bolts.models.vision.image_gpt.gpt2.GPT2
@nishantb06 - [ ]
pl_bolts.models.vision.image_gpt.igpt_module._shape_input
@nishantb06 - [ ]
pl_bolts.models.vision.image_gpt.igpt_module.cli_main
@nishantb06 - [ ]
pl_bolts.models.vision.image_gpt.igpt_module.ImageGPT
@nishantb06 - [ ]
pl_bolts.models.vision.pixel_cnn.PixelCNN
- [x]
pl_bolts.models.vision.segmentation.cli_main
@lijm1358 #880 - [x]
pl_bolts.models.vision.segmentation.SemSegment
@lijm1358 #880 - [x]
pl_bolts.models.vision.unet.DoubleConv
@lijm1358 #880 - [x]
pl_bolts.models.vision.unet.Down
@lijm1358 #880 - [x]
pl_bolts.models.vision.unet.UNet
@lijm1358 #880 - [x]
pl_bolts.models.vision.unet.Up
@lijm1358 #880 - [ ]
pl_bolts.optimizers.lars.LARS
@otaj - [ ]
pl_bolts.optimizers.lr_scheduler.linear_warmup_decay
@otaj - [ ]
pl_bolts.optimizers.lr_scheduler.LinearWarmupCosineAnnealingLR
@otaj - [x]
pl_bolts.transforms.dataset_normalizations.cifar10_normalization
@matsumotosan #898 - [x]
pl_bolts.transforms.dataset_normalizations.emnist_normalization
@matsumotosan #898 - [x]
pl_bolts.transforms.dataset_normalizations.imagenet_normalization
@matsumotosan #898 - [x]
pl_bolts.transforms.dataset_normalizations.stl10_normalization
@matsumotosan #898 - [ ]
pl_bolts.transforms.self_supervised.ssl_transforms.Patchify
- [ ]
pl_bolts.transforms.self_supervised.ssl_transforms.RandomTranslateWithReflect
- [ ]
pl_bolts.utils.arguments.gather_lit_args
- [ ]
pl_bolts.utils.arguments.LightningArgumentParser
- [ ]
pl_bolts.utils.arguments.LitArg
- [ ]
pl_bolts.utils.pretrained_weights.load_pretrained
- [ ]
pl_bolts.utils.self_supervised.torchvision_ssl_encoder
- [ ]
pl_bolts.utils.semi_supervised.balance_classes
- [ ]
pl_bolts.utils.semi_supervised.generate_half_labeled_batches
- [ ]
pl_bolts.utils.semi_supervised.Identity
- [ ]
pl_bolts.utils.shaping.tile
- [ ]
pl_bolts.utils.warnings.warn_missing_pkg
Thank you for your contributions! :muscle: :rocket: :tada:
While adding new features is good. But what do you think of re using them from torchvision?
E.g for g / d / c IoU loss are already in torchvision
If an appropriate feature is available in other projects and is in a stable state (i.e. the package isn't in beta or the feature itself is not beta/unstable/experimental), I'd go for using such feature from the other projects.
This might get tricky with new packages as we do not want to have an endless list of dependencies. But, in case of torchvision, we already require it for models, so that is absolutely ok.
Then in torchvision.ops we already have all 3. Operations and losses.
This is from v0.13 latest one.
Hey @otaj,
I am happy to work on the following to start as they are connected:
-
pl_bolts.datamodules.sklearn_datamodule.SklearnDataModule
-
pl_bolts.datamodules.sklearn_datamodule.SklearnDataset
-
pl_bolts.datamodules.sklearn_datamodule.TensorDataset
-
pl_bolts.models.regression.linear_regression.cli_main
-
pl_bolts.models.regression.linear_regression.LinearRegression
-
pl_bolts.models.regression.logistic_regression.cli_main
-
pl_bolts.models.regression.logistic_regression.LogisticRegression
If that is all good with you? Thanks! 😆
Hey @otaj,
I'm going to start off with the hopefully simple pl_bolts.datasets.cifar10_dataset.CIFAR10
and once I get the hang of the process I'll start doing it in batches.
I would like to work on
pl_bolts.models.autoencoders
Follow-up questions on removing optimization policies.
- Should we remove LinearWarmupCosineAnnealingLR as its already present in pytorch and Flash.
- Should we also remove LARS as its already present in Flash.
Cool stuff!
I would like to work on pl_bolts.callbacks.data_monitor
.
Hi @otaj,
Would like to work on features around SimCLR
-
pl_bolts.models.self_supervised.simclr.simclr_finetuner.cli_main
-
pl_bolts.models.self_supervised.simclr.simclr_module.cli_main
-
pl_bolts.models.self_supervised.simclr.simclr_module.Projection
-
pl_bolts.models.self_supervised.simclr.simclr_module.SimCLR
-
pl_bolts.models.self_supervised.simclr.simclr_module.SyncFunction
-
pl_bolts.models.self_supervised.simclr.transforms.GaussianBlur
-
pl_bolts.models.self_supervised.simclr.transforms.SimCLREvalDataTransform
-
pl_bolts.models.self_supervised.simclr.transforms.SimCLRFinetuneTransform
-
pl_bolts.models.self_supervised.simclr.transforms.SimCLRTrainDataTransform
Oh my! I go to sleep, and suddenly, it blows up! Thank you, @Ce11an, @BaruchG, @krishnakalyan3, @luca-medeiros, @ArnolFokam! I added all of you to the list :zap: :nut_and_bolt:
As to whether we should remove LARS and LinearWarmupCosineAnnealingLR - yes, but with a deprecation warning. I will take them on myself.
I'd love to contribute this awesome project.
I would like to work on pl_bolts.models.detection.yolo
Cheers
Hi, @heimish-kyma, awesome! :zap: I've added you to the list :muscle:
Hello! Can I try helping with pl_bolts.models.gans.basic.*
?
Awesome, @shivammehta007, thank you! I added you to the list :zap:
Hi everyone, but especially those who already signed up for work (@shivammehta007, @heimish-kyma, @ArnolFokam, @luca-medeiros, @krishnakalyan3, @BaruchG, @Ce11an). Please excuse me for "changing the rules" while you're already signed up for work, but this is very much a learning experience for me as well :teacher: Let's all consider #843 a "testing PR" where we can iterate on the process of how will it look like in the end. :nut_and_bolt:
In order to ensure stability and compatibility, we'd like to not raise any warnings in the tests (other than UnderReviewWarning
, and ideally not even that one). For this reason, I just opened #844, which is a simple fixture raising errors on warnings.
Please note, that it can happen, that these warnings are raised in other features which you haven't signed up for and there are potentially numerous solutions to that:
- If that feature is not taken up by anyone and you're up for it, take it up! :muscle:
- If that feature is not taken up by anyone, but you don't want to take anymore features, ping me either in some (appropriate) issue on GH or on Slack (slack username on PL is
@Ota
) and we'll figure something out :zap: - If that feature is taken up by someone already, ping them about it (and maybe include me in the loop as well). :rocket:
Thank you! :nut_and_bolt: :zap: :muscle:
Can I also take pl_bolts.datamodules.mnist_datamodule. MNISTDataModule
, pl_bolts.datamodules.vision_datamodule.VisionDataModule
and pl_bolts.datamodules.cifar10_datamodule.*
, ?
@shivammehta007, absolutely! Thank you, you were added to the list!
Hi, I would like to work on pl_bolts.datamodules.kitti_datamodule.KittiDataModule
!!
Hi @wonbbnote, thank you very much, you were also added to the list!
Hi @otaj , Would like to work on features related to dummy datasets -
-
pl_bolts.datasets.dummy_dataset.DummyDataset
-
pl_bolts.datasets.dummy_dataset.DummyDetectionDataset
-
pl_bolts.datasets.dummy_dataset.RandomDataset
-
pl_bolts.datasets.dummy_dataset.RandomDictDataset
-
pl_bolts.datasets.dummy_dataset.RandomDictStringDataset
I Plan to improve tests and documentations for these datasets.
Hi @nishantb06, thanks a lot, added you to the list!
Hi @otaj,
Would like to work on pl_bolts.models.self_supervised.resnets
too!
Hi @luca-medeiros, thank you very much! I'm back, and I hope I updated the master comment appropriately
Hi @otaj
I'd like to help out with:
pl_bolts.datamodules.binary_mnist_datamodule.BinaryMNISTDataModule
pl_bolts.datamodules.binary_emnist_datamodule.BinaryEMNISTDataModule
Hi @otaj - I'll sign up for pl_bolts.metrics.* as well
Hi, @matsumotosan, @BaruchG, thank you very much! You were added to the master comment! :tada:
Hi @otaj, do you mind adding me to pl_bolts.datasets.emnist_dataset.py
and pl_bolts.datasets.mnist_dataset.py
as well since I will be working with their corresponding datamodules.
@matsumotosan, absolutely, you're there!
Hi @otaj would like to pick up issues related to image-gpt next
-
pl_bolts.models.vision.image_gpt.gpt2.Block
-
pl_bolts.models.vision.image_gpt.gpt2.GPT2
-
pl_bolts.models.vision.image_gpt.igpt_module._shape_input
-
pl_bolts.models.vision.image_gpt.igpt_module.cli_main
-
pl_bolts.models.vision.image_gpt.igpt_module.ImageGPT
Currently planning to improve documentation and testing for these wherever needed.
Thanks!!
Hi @otaj,
I'd like to work on a few others:
-
pl_bolts.callbacks.byol_updates.BYOLMAWeightUpdate
-
pl_bolts.datamodules.emnist_datamodule.EMNISTDataModule
-
pl_bolts.datamodules.emnist_datamodule.FashionMNISTDataModule
-
pl_bolts.models.mnist_module.cli_main
-
pl_bolts.models.mnist_module.LitMNIST
Thanks
Hi, @nishantb06, @matsumotosan, thank you very much, you were added to the master comment! :rocket: