sctour
sctour copied to clipboard
`.X`. error using sct.train.Trainer()
Hi, Qian,
I am using adata as input of the h5ad file converted from Seurat. Adding data from RNA as X, adding counts from RNA as raw, transferring meta.data to obs.
During model training, I encountered the following error at the step involving sct.train.Trainer(). Even after adding the step adata.X <- adata.raw.X, the issue persists. Can you help me solve this problem? Thanks so much!
Related codes ad follows: adata.X <Compressed Sparse Row sparse matrix of dtype 'float64' with 486880 stored elements and shape (5000, 1000)> adata.raw.X <Compressed Sparse Row sparse matrix of dtype 'float64' with 17799636 stored elements and shape (5000, 33694)>
sc.pp.calculate_qc_metrics(adata, percent_top=None, log1p=False, inplace=True) sc.pp.highly_variable_genes(adata, flavor='seurat_v3', n_top_genes=1000, subset=True)
/.../python3.10/site-packages/scanpy/preprocessing/_highly_variable_genes.py:75: UserWarning: flavor='seurat_v3'
expects raw count data, but non-integers were found.
warnings.warn(
tnode = sct.train.Trainer(adata, loss_mode='nb', alpha_recon_lec=0.5, alpha_recon_lode=0.5) tnode.train()
ValueError Traceback (most recent call last) Cell In[36], line 1 ----> 1 tnode = sct.train.Trainer(adata, loss_mode='nb', alpha_recon_lec=0.5, alpha_recon_lode=0.5) 2 tnode.train()
File /.../python3.10/site-packages/sctour/train.py:168, in Trainer.init(self, adata, percent, n_latent, n_ode_hidden, n_vae_hidden, batch_norm, ode_method, step_size, alpha_recon_lec, alpha_recon_lode, alpha_kl, loss_mode, nepoch, batch_size, drop_last, lr, wt_decay, eps, random_state, val_frac, use_gpu)
166 X = self.adata.X.data if sparse.issparse(self.adata.X) else self.adata.X
167 if (X.min() < 0) or np.any(~np.equal(np.mod(X, 1), 0)):
--> 168 raise ValueError(
169 f"Invalid expression matrix in .X
. {self.loss_mode}
mode expects raw UMI counts in .X
of the AnnData."
170 )
172 self.n_cells = adata.n_obs
173 self.batch_size = batch_size
ValueError: Invalid expression matrix in .X
. nb
mode expects raw UMI counts in .X
of the AnnData.