ACmix
ACmix copied to clipboard
Official repository of ACmix (CVPR2022)
在position coding时,输入固定float,在yolo训练val时会自动进行半精度训练,将position()输出类型转换成input就好 position(......).to(x.dtype)
疑问
请问这个投影部分为什么用三个重复的1*1操作呀,卷积的过程没太看明白,可以帮我解释一下吗?谢谢
Hi! Could you please share which tool was used to create Figure 1 in your paper ? Thank you,

使用YOLOv7结合ACmix,出现如下报错: ``` `Traceback (most recent call last): File "/home/liu/桌面/zwx/YOLOv7-main/train.py", line 613, in train(hyp, opt, device, tb_writer) File "/home/liu/桌面/zwx/YOLOv7-main/train.py", line 415, in train results, maps, times = test.test(data_dict, File "/home/liu/桌面/zwx/YOLOv7-main/test.py", line...
我自己测试了一下用nn.Conv2d(16, 64, 1),输入大小是(1, 16, 224, 224),这个参数量只有1088,但是如果用ACmix得到的参数量是8604,这差了快8倍了,但是文章说 “同时与纯卷积或self-attention相比具有最小的计算开销”,好像没有体现,这是咋回事啊?
![Uploading image.png…]()
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.cuda.HalfTensor) should be the same