Laughing

Results 196 comments of Laughing

@glenn-jocher yes I tested and confirmed `pretrained` arg does not work when using DDP mode. @comlhj1114 Hi, I updated the PR a little bit and tested `pretrained` arg with DDP...

@johnnynunez is the one with dark blue that trained with `pretrained`? if so then I think the updates are working!

@johnnynunez got it! Thanks! Then it means the PR is working! @glenn-jocher I think the PR is ready! @johnnynunez tested it as well for double check!

@edkazcarlson Hi, thanks for the PR! I tested your changes locally but the results I got are almost the same as main branch. Here's my results: on main branch: ![pic-240513-1946-15](https://github.com/ultralytics/ultralytics/assets/61612323/19f3144b-860a-426a-950b-b422fb38b83a)...

@fakerhbj 指标是多尺度训练多尺度测试的,速度性能是单张单尺度1024x1024的速度

> > @fakerhbj 指标是多尺度训练多尺度测试的,速度性能是单张单尺度1024x1024的速度 > > 请问如何开启多尺度训练和多尺度预测呢?有配置文件或者相关文档吗? 因为DOTA数据集的分辨率很高,所以DOTA的训练是先采用滑窗的方式切割图片为1024x1024大小,这里的多尺度是指滑窗切割的时候的多尺度,具体可参考:https://docs.ultralytics.com/datasets/obb/dota-v2/#split-dota-images, 送入模型之前都还是采用统一的1024大小

@mzy369 不需要,针对DOTA数据的多尺度都是指切图的多尺度,训练都是1024x1024的固定分辨率

@puppetmonkey 你可以通过如下的方式查看训练的参数: ```python import torch ckpt = torch.load("weights/yolov8m-obb.pt") print(ckpt["train_args"]) ``` 所有的obb模型都是从头开始训练的,没有使用预训练加载

@glenn-jocher @ambitious-octopus Guys I removed `YOLOHuman` class since it's not needed while we treat `human` as a new task of `YOLO`. Also I've fixed the `save_one_txt` issue for human task....

@glenn-jocher Meanwhile I noticed that we have a lot duplicated code in `Validator.update_metrics` across different tasks. https://github.com/ultralytics/ultralytics/blob/7593b4a301061c086e6e756245eef76ea466e170/ultralytics/models/yolo/segment/val.py#L100 Looking into this PR: https://github.com/ultralytics/ultralytics/pull/12645, the author had to update each `val.py` to...