LLaVA-NeXT
LLaVA-NeXT copied to clipboard
weird inference output of demo for llava-next-llama-8B
Hello! I used the following demo code but got a weird inference output: ['�������� |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |> |>+b+b+b+b+b+b+b+b+b+b+b+b+b+b+b+b+b+b/b| blog+b+b+b+b+b+b+b+b+b+b+b/b| blog|~||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||']
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
pretrained = "models/llama3-llava-next-8b"
model_name = "llava_llama3"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
model.tie_weights()
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
conv_template = "llava_llama_3" # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=True,
temperature=1.0,
max_new_tokens=256,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
Thank you!