2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization
2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization copied to clipboard
Kitware Course in Biomedical Image Analysis and Visualization: ITK
================================================ Biomedical Image Analysis and Visualization: ITK
Kitware, Carrboro, North Carolina, USA
.. image:: https://mybinder.org/badge.svg :target: https://mybinder.org/v2/gh/KitwareMedical/2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization/master
Instructors:
- Matt McCormick, PhD
- Dženan Zukić, PhD
- Francois Budin
.. image:: data/kitware-logo.png :alt: Kitware :width: 400px
.. image:: data/itk-logo.png :alt: ITK :width: 500px
The Insight Segmentation and Registration Toolkit (ITK) (www.itk.org) <https://www.itk.org>
_
has become a standard in academia and industry for
medical image analysis. In recent years, the ITK community has
focused on providing programming interfaces to ITK from Python and JavaScript
and making ITK available via leading applications such as Slicer and ImageJ.
In this course we present best practices for taking advantage of ITK in your
imaging research and commercial products. We demonstrate how script writing
and can be used to access the algorithms in ITK and the
multitude of ITK extensions that are freely available on the web.
Run the Tutorial
There are many ways to run these tutorials.
On the Web, with Binder ^^^^^^^^^^^^^^^^^^^^^^^
To run the notebooks in
MyBinder <https://mybinder.readthedocs.io/en/latest/>
,
simply click this link <https://mybinder.org/v2/gh/KitwareMedical/2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization/master>
.
Locally, with Docker ^^^^^^^^^^^^^^^^^^^^
First, install Docker <https://docs.docker.com/install/>
_, if not already
available.
Next, clone the repository::
git clone https://github.com/KitwareMedical/2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization.git cd 2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization
Then, build and run the Docker image::
./build.sh ./run.sh
Paste the URL presented in the terminal in your web browser.
Locally, with Python from Python.org or a System Python ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
First, install Python <https://www.python.org/downloads/release/python-365/>
_,
if not already available.
Next, install the required dependencies::
python -m pip install jupyter matplotlib numpy scipy ipywidgets scikit-learn python -m jupyter nbextension enable --py widgetsnbextension python -m pip install itkwidgets python -m jupyter nbextension enable --py --sys-prefix itkwidgets python -m pip install itk itk-texturefeatures itk-ultrasound
Then, clone the repository::
git clone https://github.com/KitwareMedical/2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization.git cd 2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization
And start Jupyter::
python -m jupyter notebook
Locally, with Conda ^^^^^^^^^^^^^^^^^^^
First, install MiniConda <https://conda.io/miniconda.html>
_ or Anaconda, if
not already available.
Next, install the required dependencies::
conda install -c conda-forge jupyter matplotlib numpy scipy ipywidgets scikit-learn python -m pip install itkwidgets python -m jupyter nbextension enable --py --sys-prefix itkwidgets python -m pip install itk itk-texturefeatures itk-ultrasound
Then, clone the repository::
git clone https://github.com/KitwareMedical/2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization.git cd 2018-05-30-KRSCourseInBiomedicalImageAnalysisAndVisualization
And start Jupyter::
python -m jupyter notebook