MedSegDiff
MedSegDiff copied to clipboard
assert x_t.shape == eps.shape
你好,我在对于DRIVE数据集上进行采样时,出现了这样问题,请问我该如何解决呢
Traceback (most recent call last):
File "E:\deep_learning\Segmentation\MedSegDiff-master\scripts\segmentation_sample.py", line 214, in
same question
你好,我在对于DRIVE数据集上进行采样时,出现了这样问题,请问我该如何解决呢 Traceback (most recent call last): File "E:\deep_learning\Segmentation\MedSegDiff-master\scripts\segmentation_sample.py", line 214, in main() File "E:\deep_learning\Segmentation\MedSegDiff-master\scripts\segmentation_sample.py", line 123, in main sample, x_noisy, org, cal, cal_out = sample_fn( File "E:\deep_learning\Segmentation\MedSegDiff-master\guided_diffusion\gaussian_diffusion.py", line 565, in p_sample_loop_known for sample in self.p_sample_loop_progressive( File "E:\deep_learning\Segmentation\MedSegDiff-master\guided_diffusion\gaussian_diffusion.py", line 650, in p_sample_loop_progressive out = self.p_sample( File "E:\deep_learning\Segmentation\MedSegDiff-master\guided_diffusion\gaussian_diffusion.py", line 444, in p_sample out = self.p_mean_variance( File "E:\deep_learning\Segmentation\MedSegDiff-master\guided_diffusion\respace.py", line 90, in p_mean_variance return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) File "E:\deep_learning\Segmentation\MedSegDiff-master\guided_diffusion\gaussian_diffusion.py", line 324, in p_mean_variance self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) File "E:\deep_learning\Segmentation\MedSegDiff-master\guided_diffusion\gaussian_diffusion.py", line 348, in _predict_xstart_from_eps assert x_t.shape == eps.shape AssertionError
same question
我尝试打印他们的形状,分别为x_t: torch.Size([1, 1, 64, 64]),eps: torch.Size([1, 2, 64, 64]),然后我打印出eps中的数据,发现他的两个通道的数据是一样的,所以我将eps就只取了第一通道,就跑通了
Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
I try to print their shapes, which are x_t: torch.Size([1, 1, 64, 64]), eps: torch.Size([1, 2, 64, 64]), and then I print out the Data, I found that the data of his two channels are the same, so I only took the first channel of eps, and it ran through.
但是我对于问题出现的原因,还是存有我的疑问
Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
But I still have my doubts about the cause of the problem.
但是我对于问题出现的原因,还是存有我的疑问
How is your segmentation effect? After running this experiment, I feel that the segmentation results are not as good as UNet
我尝试打印他们的形状,分别为x_t: torch.Size([1, 1, 64, 64]),eps: torch.Size([1, 2, 64, 64]),然后我打印出eps中的数据,发现他的两个通道的数据是一样的,所以我将eps就只取了第一通道,就跑通了
My solution is the same as yours
但是我跑出的效果有点差
Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
But the effect I ran out was a bit poor.
请问你跑的数据集上的效果怎么样
Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
What is the effect on the data set you ran?
请问你跑的数据集上的效果怎么样
My results were also very poor
兄弟,你大约训了多少步到达这个效果的?
但是我跑出的效果有点差
Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
Brother, how many steps have you trained to achieve this effect?
But the effect I ran was a bit bad
Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
Brother, how many steps have you trained to achieve this effect?
But the effect I ran was a bit bad
应该是10000左右