Noise-Extras icon indicating copy to clipboard operation
Noise-Extras copied to clipboard

Need help with tileable GLSL impementation

Open zaguragit opened this issue 3 years ago • 0 comments

I've been trying to make OpenSimplex2 tileable in GLSL, so far, only the base function works, and it still seems off

// Inspired by Stefan Gustavson's noise
vec4 permute(vec4 t) {
    return t * (t * 34.0 + 133.0);
}

// Gradient set is a normalized expanded rhombic dodecahedron
vec3 grad(float hash) {

    // Random vertex of a cube, +/- 1 each
    vec3 cube = mod(floor(hash / vec3(1.0, 2.0, 4.0)), 2.0) * 2.0 - 1.0;

    // Random edge of the three edges connected to that vertex
    // Also a cuboctahedral vertex
    // And corresponds to the face of its dual, the rhombic dodecahedron
    vec3 cuboct = cube;
    cuboct[int(hash / 16.0)] = 0.0;

    // In a funky way, pick one of the four points on the rhombic face
    float type = mod(floor(hash / 8.0), 2.0);
    vec3 rhomb = (1.0 - type) * cube + type * (cuboct + cross(cube, cuboct));

    // Expand it so that the new edges are the same length
    // as the existing ones
    vec3 grad = cuboct * 1.22474487139 + rhomb;

    // To make all gradients the same length, we only need to shorten the
    // second type of vector. We also put in the whole noise scale constant.
    // The compiler should reduce it into the existing floats. I think.
    grad *= (1.0 - 0.042942436724648037 * type) * 32.80201376986577;

    return grad;
}

vec3 wrap_dist(vec3 dist, vec3 limit) {
    vec3 ad = abs(dist);
    return sign(dist) * min(ad, limit - ad);
}

vec3 wrap(vec3 dist, vec3 limit) {
    vec3 m = mod(dist, limit);
    vec3 sign = sign(m);
    vec3 is_negative = sign * -0.5 + 0.5;
    is_negative *= abs(sign);
    return m + is_negative * limit;
}

// BCC lattice split up into 2 cube lattices
vec4 open_simplex2_tileable_base(vec3 X, vec3 frequency, vec3 limit) {
    X = wrap(X, limit);
    X *= frequency;
    limit *= frequency;

    // First half-lattice, closest edge
    vec3 v1 = wrap(round(X), limit);
    vec3 dd1 = X - v1;
    vec3 d1 = wrap_dist(dd1, limit);
    vec3 score1 = abs(d1);
    vec3 dir1 = step(max(score1.yzx, score1.zxy), score1);
    vec3 v2 = wrap(v1 + dir1 * sign(dd1), limit);
    vec3 d2 = wrap_dist(X - v2, limit);

    // Second half-lattice, closest edge
    vec3 X2 = wrap(X + 144.5, limit);
    vec3 v3 = wrap(round(X2), limit);
    vec3 dd3 = X2 - v3;
    vec3 d3 = wrap_dist(dd3, limit);
    vec3 score2 = abs(d3);
    vec3 dir2 = step(max(score2.yzx, score2.zxy), score2);
    vec3 v4 = wrap(v3 + dir2 * sign(dd3), limit);
    vec3 d4 = wrap_dist(X2 - v4, limit);

    // Gradient hashes for the four points, two from each half-lattice
    vec4 hashes = permute(mod(vec4(v1.x, v2.x, v3.x, v4.x), 289.0));
    hashes = permute(mod(hashes + vec4(v1.y, v2.y, v3.y, v4.y), 289.0));
    hashes = mod(permute(mod(hashes + vec4(v1.z, v2.z, v3.z, v4.z), 289.0)), 48.0);

    // Gradient extrapolations & kernel function
    vec4 a = max(0.5 - vec4(dot(d1, d1), dot(d2, d2), dot(d3, d3), dot(d4, d4)), 0.0);
    vec4 aa = a * a; vec4 aaaa = aa * aa;
    vec3 g1 = grad(hashes.x); vec3 g2 = grad(hashes.y);
    vec3 g3 = grad(hashes.z); vec3 g4 = grad(hashes.w);
    vec4 extrapolations = vec4(dot(d1, g1), dot(d2, g2), dot(d3, g3), dot(d4, g4));

    // Derivatives of the noise
    vec3 derivative = -8.0 * mat4x3(d1, d2, d3, d4) * (aa * a * extrapolations)
    + mat4x3(g1, g2, g3, g4) * aaaa;

    // Return it all as a vec4
    return vec4(derivative, dot(aaaa, extrapolations));
}

// Use this if you don't want Z to look different from X and Y
vec4 open_simplex2_tileable_conventional(vec3 X, vec3 frequency, vec3 limit) {

    // Rotate around the main diagonal. Not a skew transform.
    vec4 result = open_simplex2_tileable_base(dot(X, vec3(2.0/3.0)) - X, frequency, limit);
    return vec4(dot(result.xyz, vec3(2.0/3.0)) - result.xyz, result.w);
}

// Use this if you want to show X and Y in a plane, then use Z for time, vertical, etc.
vec4 open_simplex2_tileable_improve_xy(vec3 X, vec3 frequency, vec3 limit) {

    // Rotate so Z points down the main diagonal. Not a skew transform.
    const mat3 orthonormal_map = mat3(
        0.788675134594813, -0.211324865405187, -0.577350269189626,
        -0.211324865405187, 0.788675134594813, -0.577350269189626,
        0.577350269189626, 0.577350269189626, 0.577350269189626
    );

    vec4 result = open_simplex2_tileable_base(orthonormal_map * X, frequency, limit);
    return vec4(result.xyz * orthonormal_map, result.w);
}

I'm sorry if this isn't the right place to post this

zaguragit avatar Feb 16 '22 18:02 zaguragit