CUDA.jl
CUDA.jl copied to clipboard
CuSparseMatrix - CuMatrix multiplication not working: giving Scalar Indexing
Multiplying a CuSparseMatrixCSC with a CuArray gives Scalar indexing.
To reproduce:
CUDA.allowscalar(false)
A = cu(sparse([1,2,3], [1,2,3], [1,2,3]))
B = cu(rand(3,1))
C = A*B
or
CUDA.allowscalar(false)
A = cu(sparse([1,2,3], [1,2,3], [1,2,3]))
B = cu(rand(3,1))
C = similar(B)
mul!(C, A, B)
Both give the same problem of course.
Version info
Details on Julia:
Julia Version 1.9.2
Commit e4ee485e909 (2023-07-05 09:39 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 20 × 12th Gen Intel(R) Core(TM) i7-12700K
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.6 (ORCJIT, alderlake)
Threads: 21 on 20 virtual cores
Environment:
JULIA_NUM_THREADS = auto
CUDA runtime 12.1, artifact installation
CUDA driver 12.0
NVIDIA driver 525.125.6
CUDA libraries:
- CUBLAS: 12.1.3
- CURAND: 10.3.2
- CUFFT: 11.0.2
- CUSOLVER: 11.4.5
- CUSPARSE: 12.1.0
- CUPTI: 18.0.0
- NVML: 12.0.0+525.125.6
Julia packages:
- CUDA: 4.4.1
- CUDA_Driver_jll: 0.5.0+1
- CUDA_Runtime_jll: 0.6.0+0
Toolchain:
- Julia: 1.9.2
- LLVM: 14.0.6
- PTX ISA support: 3.2, 4.0, 4.1, 4.2, 4.3, 5.0, 6.0, 6.1, 6.3, 6.4, 6.5, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5
- Device capability support: sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_62, sm_70, sm_72, sm_75, sm_80, sm_86
1 device:
0: NVIDIA GeForce RTX 3070 (sm_86, 6.158 GiB [/](https://vscode-remote+ssh-002dremote-002b128-002e178-002e67-002e73.vscode-resource.vscode-cdn.net/) 8.000 GiB available)