Concatenation of 3D OffsetArrays fails if their axes do not start at 1
I try to hcat an OffsetArray with indices (0:-1, 0:-1,0:1) and size=(0,0,2) with another OffsetArray with indices (0:-1,0:15,0:1) and size(0,16,2) and I get the error ERROR: BoundsError: attempt to access 0×16×2 Array{Int8,3} at index [1:0, 0:15, 1:2]
julia> form=OffsetArray(reshape(zeros(Int8,0),0,0,2),0:-1,0:-1,0:1)
julia> exp=OffsetArray(reshape(zeros(Int8,0),0,16,2),0:-1,0:15,0:1)
julia> hcat(form,exp) Error!!
julia> hcat(form,exp)
ERROR: BoundsError: attempt to access 0×16×2 Array{Int8,3} at index [1:0, 0:15, 1:2]
Stacktrace:
[1] throw_boundserror(::Array{Int8,3}, ::Tuple{UnitRange{Int64},UnitRange{Int64},UnitRange{Int64}}) at ./abstractarray.jl:484
[2] checkbounds at ./abstractarray.jl:449 [inlined]
[3] _setindex! at ./multidimensional.jl:638 [inlined]
[4] setindex! at ./abstractarray.jl:998 [inlined]
[5] __cat(::Array{Int8,3}, ::Tuple{Int64,Int64,Int64}, ::Tuple{Bool,Bool}, ::OffsetArray{Int8,3,Array{Int8,3}}, ::Vararg{OffsetArray{Int8,3,Array{Int8,3}},N} where N) at ./abstractarray.jl:1379
[6] _cat_t(::Val{2}, ::Type, ::OffsetArray{Int8,3,Array{Int8,3}}, ::Vararg{OffsetArray{Int8,3,Array{Int8,3}},N} where N) at ./abstractarray.jl:1361
[7] #cat_t#99(::Val{2}, ::Function, ::Type{Int8}, ::OffsetArray{Int8,3,Array{Int8,3}}, ::Vararg{OffsetArray{Int8,3,Array{Int8,3}},N} where N) at ./abstractarray.jl:1353
[8] (::getfield(Base, Symbol("#kw##cat_t")))(::NamedTuple{(:dims,),Tuple{Val{2}}}, ::typeof(Base.cat_t), ::Type{Int8}, ::OffsetArray{Int8,3,Array{Int8,3}}, ::Vararg{OffsetArray{Int8,3,Array{Int8,3}},N} where N) at ./none:0
[9] _cat at ./abstractarray.jl:1481 [inlined]
[10] #cat#100 at ./abstractarray.jl:1480 [inlined]
[11] #cat at ./none:0 [inlined]
[12] hcat(::OffsetArray{Int8,3,Array{Int8,3}}, ::OffsetArray{Int8,3,Array{Int8,3}}) at ./abstractarray.jl:1489
[13] top-level scope at none:0
However if I try with arrays with regular indices
julia> form=reshape(zeros(Int8,0),0,0,2)
julia> exp=reshape(zeros(Int8,0),0,16,2)
juilia> hcat(form,exp) works!!!
Thanks
Also
julia> hcat(zeros(2, 1:1, 2), zeros(2, 2:3, 2))
ERROR: BoundsError: attempt to access 2×3×2 Array{Float64,3} at index [1:2, 3:4, 1:2]
julia> vcat(zeros(1:1, 2, 2), zeros(2:3, 2, 2))
ERROR: BoundsError: attempt to access 3×2×2 Array{Float64,3} at index [3:4, 1:2, 1:2]
but this works
julia> hcat(zeros(2, 1:1, 2), zeros(2, 1:2, 2))
2×3×2 Array{Float64,3}:
[:, :, 1] =
0.0 0.0 0.0
0.0 0.0 0.0
[:, :, 2] =
0.0 0.0 0.0
0.0 0.0 0.0
Evidently the concatenations try to index into an Array with offset indices, which fails if the axes do not start at 1.
Perhaps this should be fixed in Base?
cat is a rough one. You can see that even CatIndices, dedicated to solving this problem, has never gotten around to figuring out a general solution. Doesn't mean it's not possible of course.
The key problem, I think, is that cat lives in an "arrays are just lists, or lists-of-lists" world, and offset axes live in a world of "arrays are function-approximations over positions." Those two are not always compatible. In the offset-axes world, cat only makes sense if the arrays are already "neighbors," but that implies a completely different axis condition than the one that Base's cat uses.
I agree, this is something that I was thinking of as well. However Base.cat appears to ignore indices altogether for arrays <3D, so it might be worthwhile seeking consistency?
julia> hcat(zeros(2, 1:2), ones(2, 10:11))
2×4 Array{Float64,2}:
0.0 0.0 1.0 1.0
0.0 0.0 1.0 1.0
julia> hcat(zeros(2, 1:2), ones(2, -5:-4))
2×4 Array{Float64,2}:
0.0 0.0 1.0 1.0
0.0 0.0 1.0 1.0
Even the OP works if the third dimension is stripped
julia> form = OffsetArray(reshape(zeros(Int8,0), 0, 0), 0:-1, 0:-1)
0×0 OffsetArray(::Array{Int8,2}, 0:-1, 0:-1) with eltype Int8 with indices 0:-1×0:-1
julia> exp = OffsetArray(reshape(zeros(Int8,0), 0, 16), 0:-1, 0:15)
0×16 OffsetArray(::Array{Int8,2}, 0:-1, 0:15) with eltype Int8 with indices 0:-1×0:15
julia> hcat(form, exp)
0×16 Array{Int8,2}
Fair enough, if cat just ignores all index values and treats arrays as lists, that is indeed consistent. :+1:
Repost from https://github.com/JuliaLang/julia/issues/37628
1d case vcat(zeros(2:3), zeros(4:5)) doesn't work, either.
julia> vcat(zeros(2:3), zeros(4:5))
ERROR: ArgumentError: offset arrays are not supported but got an array with index other than 1
Stacktrace:
[1] require_one_based_indexing
@ ./abstractarray.jl:89 [inlined]
[2] setindex!
@ ./array.jl:855 [inlined]
[3] _typed_vcat(#unused#::Type{Float64}, V::Tuple{OffsetVector{Float64, Vector{Float64}}, OffsetVector{Float64, Vector{Float64}}})
@ Base ./abstractarray.jl:1450
[4] typed_vcat
@ ./abstractarray.jl:1518 [inlined]
[5] vcat(::OffsetVector{Float64, Vector{Float64}}, ::OffsetVector{Float64, Vector{Float64}})
@ Base ./abstractarray.jl:1433
[6] top-level scope
@ REPL[36]:1
One possible fairly straightforward rule would be drop all special indices along the direction of concatenation, and keep them when orthogonal.
Thus hcat(zeros(-1:1), ones(-1:1)) would have axes (-1:1, OneTo(2)) (and would demand that axes(z,1) == axes(o,1), I guess, not just size), but vcat of the same would have (OneTo(6),).
Would this rule have weird consequences?