MultivariateOrthogonalPolynomials.jl
MultivariateOrthogonalPolynomials.jl copied to clipboard
Either: PartialDerivative{k}(<:Basis) or Inclusion(::Basis) should err (or both)
julia> P = JacobiTriangle()
JacobiTriangle(0, 0, 0)
julia> Q = JacobiTriangle(2, 2, 2)
JacobiTriangle(2, 2, 2)
julia> ∂x = PartialDerivative{1}(P)
PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}
julia> Q \ (∂x^2 * P)
ERROR: DimensionMismatch("Second axis of A, Inclusion(JacobiTriangle(0, 0, 0)), and first axis of B, Inclusion(DomainSets.FixedUnitSimplex{SVector{2, Float64}, :closed}()) must match")
Stacktrace:
[1] _check_mul_axes(A::PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, B::ApplyQuasiMatrix{Float64, typeof(*), Tuple{JacobiTriangle{Float64, Int64}, BandedBlockBandedMatrix{Float64, Adjoint{Float64, LazyBandedMatrices.BlockBroadcastArray{Float64, 2, typeof(hcat), Tuple{LazyArrays.BroadcastVector{Float64, typeof(/), Tuple{LazyArrays.BroadcastVector{Int64, typeof(*), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Fill{Int64, 1, Tuple{Base.OneTo{Int64}}}, Type{Fill}, Tuple{InfiniteArrays.OneToInf{Int64}, InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{StepRange{Int64, Int64}, typeof(*), Tuple{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Float64, typeof(/), Tuple{LazyArrays.BroadcastVector{Int64, typeof(*), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Fill{Int64, 1, Tuple{Base.OneTo{Int64}}}, Type{Fill}, Tuple{InfiniteArrays.OneToInf{Int64}, InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}}}, Int64}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{StepRange{Int64, Int64}, typeof(*), Tuple{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}}}}, BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}})
@ ArrayLayouts ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:87
[2] check_mul_axes(::PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, ::ApplyQuasiMatrix{Float64, typeof(*), Tuple{JacobiTriangle{Float64, Int64}, BandedBlockBandedMatrix{Float64, Adjoint{Float64, LazyBandedMatrices.BlockBroadcastArray{Float64, 2, typeof(hcat), Tuple{LazyArrays.BroadcastVector{Float64, typeof(/), Tuple{LazyArrays.BroadcastVector{Int64, typeof(*), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Fill{Int64, 1, Tuple{Base.OneTo{Int64}}}, Type{Fill}, Tuple{InfiniteArrays.OneToInf{Int64}, InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{StepRange{Int64, Int64}, typeof(*), Tuple{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Float64, typeof(/), Tuple{LazyArrays.BroadcastVector{Int64, typeof(*), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Fill{Int64, 1, Tuple{Base.OneTo{Int64}}}, Type{Fill}, Tuple{InfiniteArrays.OneToInf{Int64}, InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}}}, Int64}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{StepRange{Int64, Int64}, typeof(*), Tuple{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}}}}, BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}})
@ ArrayLayouts ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:89
[3] instantiate
@ ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:101 [inlined]
[4] materialize
@ ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:105 [inlined]
[5] mul
@ ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:106 [inlined]
[6] *(A::PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, B::ApplyQuasiMatrix{Float64, typeof(*), Tuple{JacobiTriangle{Float64, Int64}, BandedBlockBandedMatrix{Float64, Adjoint{Float64, LazyBandedMatrices.BlockBroadcastArray{Float64, 2, typeof(hcat), Tuple{LazyArrays.BroadcastVector{Float64, typeof(/), Tuple{LazyArrays.BroadcastVector{Int64, typeof(*), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Fill{Int64, 1, Tuple{Base.OneTo{Int64}}}, Type{Fill}, Tuple{InfiniteArrays.OneToInf{Int64}, InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{StepRange{Int64, Int64}, typeof(*), Tuple{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Float64, typeof(/), Tuple{LazyArrays.BroadcastVector{Int64, typeof(*), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Fill{Int64, 1, Tuple{Base.OneTo{Int64}}}, Type{Fill}, Tuple{InfiniteArrays.OneToInf{Int64}, InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}}}, Int64}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}, LazyArrays.BroadcastVector{Int64, typeof(+), Tuple{BlockVector{Int64, LazyArrays.BroadcastVector{StepRange{Int64, Int64}, typeof(*), Tuple{Int64, LazyArrays.BroadcastVector{Base.OneTo{Int64}, Type{Base.OneTo}, Tuple{InfiniteArrays.OneToInf{Int64}}}}}, Tuple{BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}, Int64}}}}}}}, BlockedUnitRange{RangeCumsum{Int64, InfiniteArrays.OneToInf{Int64}}}}}})
@ QuasiArrays ~/.julia/packages/QuasiArrays/bxqu9/src/matmul.jl:23
[7] *(App::ApplyQuasiMatrix{Float64, typeof(^), Tuple{PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, Int64}}, b::JacobiTriangle{Float64, Int64})
@ QuasiArrays ~/.julia/packages/QuasiArrays/bxqu9/src/lazyquasiarrays.jl:231
[8] top-level scope
@ REPL[72]:1
julia> Q \ (∂x.^2 * P)
ERROR: DimensionMismatch("Second axis of A, Inclusion(JacobiTriangle(0, 0, 0)), and first axis of B, Inclusion(DomainSets.FixedUnitSimplex{SVector{2, Float64}, :closed}()) must match")
Stacktrace:
[1] _check_mul_axes(A::BroadcastQuasiMatrix{Float64, typeof(Base.literal_pow), Tuple{Base.RefValue{typeof(^)}, PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, Base.RefValue{Val{2}}}}, B::JacobiTriangle{Float64, Int64})
@ ArrayLayouts ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:87
[2] check_mul_axes(::BroadcastQuasiMatrix{Float64, typeof(Base.literal_pow), Tuple{Base.RefValue{typeof(^)}, PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, Base.RefValue{Val{2}}}}, ::JacobiTriangle{Float64, Int64})
@ ArrayLayouts ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:89
[3] instantiate
@ ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:101 [inlined]
[4] materialize(M::ArrayLayouts.Mul{LazyArrays.BroadcastLayout{typeof(Base.literal_pow)}, ContinuumArrays.BasisLayout, BroadcastQuasiMatrix{Float64, typeof(Base.literal_pow), Tuple{Base.RefValue{typeof(^)}, PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, Base.RefValue{Val{2}}}}, JacobiTriangle{Float64, Int64}})
@ ArrayLayouts ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:105
[5] mul
@ ~/.julia/packages/ArrayLayouts/mTQvg/src/mul.jl:106 [inlined]
[6] *(A::BroadcastQuasiMatrix{Float64, typeof(Base.literal_pow), Tuple{Base.RefValue{typeof(^)}, PartialDerivative{1, Float64, Inclusion{Float64, JacobiTriangle{Float64, Int64}}}, Base.RefValue{Val{2}}}}, B::JacobiTriangle{Float64, Int64})
@ QuasiArrays ~/.julia/packages/QuasiArrays/bxqu9/src/matmul.jl:23
[7] top-level scope
@ REPL[73]:1
julia>
Should be PartialDerivative{1}(axes(P,1))
Ok, so the real issue is that the user isn't being prevented from constructing junk.
Correct: it should at minimum only allow taking in a AbstractQuasiVector
TBF up until now I was the only user and I never passed in junk. So perhaps the real issue is that the user base has doubled and is now too big 😂
https://www.youtube.com/watch?v=G19B7lTgwCE