MLJModels.jl
MLJModels.jl copied to clipboard
Interfacing with Sklearn supervised models
This issue is more to keep track of things than to ask for help
https://scikit-learn.org/stable/modules/classes.html
Supervised models
Dummy models
? | Name | Has predict_proba? | comment |
---|---|---|---|
✅ | DummyClassifier | yes | |
✅ | DummyRegressor | no |
Generalized Linear Models
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
? | Name | Has predict_proba? | comment |
---|---|---|---|
✅ | ARDRegression | no | |
✅ | BayesianRidge | no | |
✅ | ElasticNet | no | 1 |
✅ | ElasticNetCV | no | 1 |
✅ | HuberRegressor | no | |
✅ | Lars | no | 1 |
✅ | LarsCV | no | 1 |
✅ | Lasso | no | 1 |
✅ | LassoCV | no | 1 |
✅ | LassoLars | no | 1 |
✅ | LassoLarsCV | no | 1 |
✅ | LassoLarsIC | no | 1 |
✅ | LinearRegression | no | |
✅ | LogisticRegression | yes | 2 |
✅ | LogisticRegressionCV | yes | 2 |
✅ | MultiTaskLasso | no | 1 |
✅ | MultiTaskElasticNet | no | 1 |
✅ | MultiTaskLassoCV | no | 1 |
✅ | MultiTaskElasticNetCV | no | 1 |
✅ | OrthogonalMatchingPursuit | no | |
✅ | OrthogonalMatchingPursuitCV | no | |
✅ | PassiveAggressiveClassifier | no | |
✅ | PassiveAggressiveRegressor | no | |
✅ | Perceptron | no | |
✅ | RANSACRegressor | no | |
✅ | Ridge | no | |
✅ | RidgeClassifier | no | |
✅ | RidgeClassifierCV | no | |
✅ | RidgeCV | no | |
✅ | SGDClassifier | yes | |
✅ | SGDRegressor | no | |
✅ | TheilSenRegressor | no |
- could extract path
- there's also predict_log_proba which we may want to interface with (?)
Gaussian Processes
? | Name | Has predict_proba? | comment |
---|---|---|---|
✅ | GPClassifier | yes | |
✅ | GPRegressor | no |
Ensemble models
? | Name | Has predict_proba? | comment |
---|---|---|---|
✅ | AdaboostClassif | yes | |
✅ | AdaboostReg | no | |
✅ | BaggingClassif | yes | |
✅ | BaggingReg | no | |
✅ | ExtraTreesClassif | yes | |
✅ | ExtraTreesReg | no | |
✅ | GDBClassif | yes | |
✅ | GDBReg | no | |
✅ | RFClassif | yes | |
✅ | RFReg | no | |
❌ | VotingClassif | no | |
❌ | VotingReg | no | |
❌ | HGBClassif | yes | experimental |
❌ | HGBReg | no | experimental |
Simple models
? | Name | Has predict_proba? | comment |
---|---|---|---|
✅ | BernoulliNB | yes | |
✅ | GaussianNB | yes | |
✅ | MultinomialNB | yes | |
✅ | ComplementNB | yes | |
✅ | KNeighborsClassifier | yes | |
✅ | KNeighborsRegressor | no | |
❌ | RadiusNeighborsClassifier | no | |
❌ | RadiusNeighborsRegressor | no | |
❌ | NearestCentroid (classif) | no |
NNs
? | Name | Has predict_proba? | comment |
---|---|---|---|
❌ | MLPClassifier | yes | |
❌ | MLPRegressor | no |
SVMs
? | Name | Has predict_proba? | comment |
---|---|---|---|
✅ | LinearSVC | no | |
✅ | LinearSVR | no | |
✅ | NuSVC | no | |
✅ | NuSVR | no | |
✅ | SVC | no | |
✅ | SVR | no |
Exotic models
? | Name | Has predict_proba? | comment |
---|---|---|---|
❌ | IsotonicRegression | no | |
❌ | KernelRidgeRegression | no | |
❌ | BayesianGaussianMixture | yes | |
❌ | GaussianMixture | yes | |
❌ | CalibratedClassifierCV | yes |
Probably also those: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition
PLSR is used in ISL so could be good to complete that
Not familiar with cross_decomposition. Can I think of this as a transformer, like we do PCA?