best-of-atomistic-machine-learning
best-of-atomistic-machine-learning copied to clipboard
🏆 A ranked list of awesome atomistic machine learning projects ⚛️🧬💎.
Best of Atomistic Machine Learning ⚛️🧬💎
🏆 A ranked list of awesome atomistic machine learning (AML) projects. Updated quarterly.
This curated list contains 360 awesome open-source projects with a total of 180K stars grouped into 22 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml.
The current focus of this list is more on simulation data rather than experimental data, and more on materials rather than drug design. Nevertheless, contributions from other fields are warmly welcome!
🧙♂️ Discover other best-of lists or create your own.
Contents
- Active learning 4 projects
- Biomolecules 2 projects
- Community resources 21 projects
- Datasets 35 projects
- Data Structures 4 projects
- Density functional theory (ML-DFT) 25 projects
- Educational Resources 24 projects
- Explainable Artificial intelligence (XAI) 4 projects
- Electronic structure methods (ML-ESM) 3 projects
- General Tools 22 projects
- Generative Models 11 projects
- Interatomic Potentials (ML-IAP) 65 projects
- Language Models 16 projects
- Materials Discovery 9 projects
- Mathematical tools 11 projects
- Molecular Dynamics 10 projects
- Reinforcement Learning 2 projects
- Representation Engineering 23 projects
- Representation Learning 55 projects
- Unsupervised Learning 7 projects
- Visualization 2 projects
- Wavefunction methods (ML-WFT) 4 projects
- Others 2 projects
Explanation
- 🥇🥈🥉 Combined project-quality score
- ⭐️ Star count from GitHub
- 🐣 New project (less than 6 months old)
- 💤 Inactive project (6 months no activity)
- 💀 Dead project (12 months no activity)
- 📈📉 Project is trending up or down
- ➕ Project was recently added
- 👨💻 Contributors count from GitHub
- 🔀 Fork count from GitHub
- 📋 Issue count from GitHub
- ⏱️ Last update timestamp on package manager
- 📥 Download count from package manager
- 📦 Number of dependent projects
Active learning
Projects that focus on enabling active learning, iterative learning schemes for atomistic ML.
FLARE (🥇20 · ⭐ 270 · 💤) - An open-source Python package for creating fast and accurate interatomic potentials. MIT C++ ML-IAP
-
GitHub (👨💻 37 · 🔀 61 · 📥 5 · 📦 10 · 📋 200 - 15% open · ⏱️ 26.05.2023):
it clone https://github.com/mir-group/flare
Finetuna (🥈11 · ⭐ 41 · 💤) - Active Learning for Machine Learning Potentials. MIT
-
GitHub (👨💻 11 · 🔀 11 · 📋 20 - 25% open · ⏱️ 03.10.2023):
it clone https://github.com/ulissigroup/finetuna
ACEHAL (🥉5 · ⭐ 10 · 💤) - Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials. Unlicensed Julia
-
GitHub (👨💻 3 · 🔀 6 · 📋 10 - 40% open · ⏱️ 21.09.2023):
it clone https://github.com/ACEsuit/ACEHAL
Show 1 hidden projects...
Biomolecules
Projects that focus on biomolecules, protein structure, protein folding, etc. using atomistic ML.
AlphaFold (🥇23 · ⭐ 12K) - Open source code for AlphaFold. Apache-2
-
GitHub (👨💻 20 · 🔀 2K · 📦 10 · 📋 820 - 27% open · ⏱️ 12.04.2024):
it clone https://github.com/deepmind/alphafold
Uni-Fold (🥉15 · ⭐ 340) - An open-source platform for developing protein models beyond AlphaFold. Apache-2
-
GitHub (👨💻 7 · 🔀 61 · 📥 3.3K · 📋 68 - 25% open · ⏱️ 08.01.2024):
it clone https://github.com/dptech-corp/Uni-Fold
Community resources
Projects that collect atomistic ML resources or foster communication within community.
🔗 AI for Science Map - Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..
🔗 Atomic Cluster Expansion - Atomic Cluster Expansion (ACE) community homepage.
🔗 CrystaLLM - Generate a crystal structure from a composition. language-models generative pre-trained transformer
🔗 matsci.org - A community forum for the discussion of anything materials science, with a focus on computational materials science..
🔗 Matter Modeling Stack Exchange - Machine Learning - Forum StackExchange, site Matter Modeling, ML-tagged questions.
Best-of Machine Learning with Python (🥇22 · ⭐ 15K) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python
-
GitHub (👨💻 45 · 🔀 2.2K · 📋 53 - 35% open · ⏱️ 18.04.2024):
it clone https://github.com/ml-tooling/best-of-ml-python
Graph-based Deep Learning Literature (🥇19 · ⭐ 4.6K) - links to conference publications in graph-based deep learning. MIT general-ml rep-learn
-
GitHub (👨💻 12 · 🔀 740 · ⏱️ 30.03.2024):
it clone https://github.com/naganandy/graph-based-deep-learning-literature
MatBench (🥇19 · ⭐ 96) - Matbench: Benchmarks for materials science property prediction. MIT datasets benchmarking
MatBench Discovery (🥈16 · ⭐ 70) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking
GT4SD - Generative Toolkit for Scientific Discovery (🥈15 · ⭐ 300) - Gradio apps of generative models in GT4SD. MIT generative pre-trained drug-discovery
-
GitHub (👨💻 20 · 🔀 64 · 📋 95 - 1% open · ⏱️ 25.04.2024):
it clone https://github.com/GT4SD/gt4sd-core
AI for Science Resources (🥈13 · ⭐ 410) - List of resources for AI4Science research, including learning resources. GPL-3.0 license
-
GitHub (👨💻 26 · 🔀 52 · 📋 12 - 16% open · ⏱️ 28.03.2024):
it clone https://github.com/divelab/AIRS
GNoME Explorer (🥉10 · ⭐ 800 · 🐣) - Graph Networks for Materials Exploration Database. Apache-2 datasets materials-discovery
-
GitHub (👨💻 2 · 🔀 120 · 📋 17 - 76% open · ⏱️ 02.12.2023):
it clone https://github.com/google-deepmind/materials_discovery
MoLFormers UI (🥉9 · ⭐ 200 · 💤) - A family of foundation models trained on chemicals. Apache-2 transformer language-models pre-trained drug-discovery
-
GitHub (👨💻 5 · 🔀 37 · 📋 18 - 44% open · ⏱️ 16.10.2023):
it clone https://github.com/IBM/molformer
Awesome Materials Informatics (🥉8 · ⭐ 340) - Curated list of known efforts in materials informatics = modern materials science. Custom
-
GitHub (👨💻 19 · 🔀 76 · ⏱️ 29.02.2024):
it clone https://github.com/tilde-lab/awesome-materials-informatics
optimade.science (🥉8 · ⭐ 8 · 💤) - A sky-scanner Optimade browser-only GUI. MIT datasets
-
GitHub (👨💻 8 · 🔀 2 · 📋 25 - 28% open · ⏱️ 06.07.2023):
it clone https://github.com/tilde-lab/optimade.science
Awesome Neural Geometry (🥉7 · ⭐ 850) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed educational rep-learn
-
GitHub (👨💻 11 · 🔀 55 · ⏱️ 14.02.2024):
it clone https://github.com/neurreps/awesome-neural-geometry
The Collection of Database and Dataset Resources in Materials Science (🥉6 · ⭐ 220) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning.. Unlicensed datasets
-
GitHub (👨💻 2 · 🔀 37 · ⏱️ 03.11.2023):
it clone https://github.com/sedaoturak/data-resources-for-materials-science
Show 4 hidden projects...
- A Highly Opinionated List of Open-Source Materials Informatics Resources (🥉8 · ⭐ 110 · 💀) - A Highly Opinionated List of Open Source Materials Informatics Resources.
MIT - Does this material exist? (🥉2 · ⭐ 15 · 🐣) - Vote on whether you think predicted crystal structures could be synthesised.
MITfor-funmaterials-discovery - MateriApps (🥉1) - A Portal Site of Materials Science Simulation.
Unlicensed - GitHub topic materials-informatics -
Unlicensed
Datasets
Datasets, databases and trained models for atomistic ML.
🔗 Catalysis Hub - A web-platform for sharing data and software for computational catalysis research!.
🔗 Citrination Datasets - AI-Powered Materials Data Platform. Open Citrination has been decommissioned.
🔗 crystals.ai - Curated datasets for reproducible AI in materials science.
🔗 DeepChem Models - DeepChem models on HuggingFace. pre-trained language-models
🔗 JARVIS-Leaderboard ( ⭐ 50) - Explore State-of-the-Art Materials Design Methods: https://arxiv.org/abs/2306.11688. benchmarking
🔗 Materials Project - Charge Densities - Materials Project has started offering charge density information available for download via their public API.
🔗 matterverse.ai - Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.
🔗 NRELMatDB - Computational materials database with the specific focus on materials for renewable energy applications including, but..
🔗 Quantum-Machine.org Datasets - Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.
🔗 sGDML Datasets - MD17, MD22, DFT datasets.
🔗 MoleculeNet - A Benchmark for Molecular Machine Learning. benchmarking
🔗 ZINC15 - A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable.. graph biomolecules
🔗 ZINC20 - A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable.. graph biomolecules
OPTIMADE Python tools (🥇23 · ⭐ 60 · 📉) - Tools for implementing and consuming OPTIMADE APIs in Python. MIT
MPContribs (🥇23 · ⭐ 34) - Platform for materials scientists to contribute and disseminate their materials data through Materials Project. MIT
Open Catalyst datasets (🥇19 · ⭐ 600) - The datasets of the Open Catalyst project, OC20, OC22. CC-BY-4.0
-
GitHub (👨💻 36 · 🔀 200 · 📋 170 - 2% open · ⏱️ 25.04.2024):
it clone https://github.com/Open-Catalyst-Project/ocp
Open Databases Integration for Materials Design (OPTIMADE) (🥈18 · ⭐ 67) - Specification of a common REST API for access to materials databases. CC-BY-4.0
-
GitHub (👨💻 20 · 🔀 35 · 📋 230 - 26% open · ⏱️ 10.04.2024):
it clone https://github.com/Materials-Consortia/OPTIMADE
QH9: A Quantum Hamiltonian Prediction Benchmark (🥈13 · ⭐ 410) - Artificial Intelligence Research for Science (AIRS). CC-BY-NC-SA 4.0 ML-DFT
-
GitHub (👨💻 26 · 🔀 52 · 📋 12 - 16% open · ⏱️ 28.03.2024):
it clone https://github.com/divelab/AIRS
SPICE (🥈13 · ⭐ 130) - A collection of QM data for training potential functions. MIT ML-IAP MD
-
GitHub (🔀 5 · 📥 240 · 📋 57 - 26% open · ⏱️ 15.04.2024):
it clone https://github.com/openmm/spice-dataset
Materials Data Facility (MDF) (🥈12 · ⭐ 10) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,.. Apache-2
-
GitHub (👨💻 7 · 🔀 1 · ⏱️ 05.02.2024):
it clone https://github.com/materials-data-facility/connect_client
3DSC Database (🥉5 · ⭐ 13) - Repo for the paper publishing the superconductor database with 3D crystal structures. Custom superconductors materials-discovery
-
GitHub (🔀 4 · ⏱️ 08.01.2024):
it clone https://github.com/aimat-lab/3DSC
SciGlass (🥉5 · ⭐ 8 · 💤) - The database contains a vast set of data on the properties of glass materials. MIT
-
GitHub (👨💻 2 · 🔀 3 · 📥 16 · ⏱️ 27.08.2023):
it clone https://github.com/drcassar/SciGlass
paper-data-redundancy (🥉5 · ⭐ 5) - Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data. BSD-3 small-data single-paper
-
GitHub (⏱️ 22.03.2024):
it clone https://github.com/mathsphy/paper-data-redundancy
Show 12 hidden projects...
- ATOM3D (🥈18 · ⭐ 280 · 💀) - ATOM3D: tasks on molecules in three dimensions.
MITbiomoleculesbenchmarking - OpenKIM (🥈10 · ⭐ 31 · 💀) - The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-..
LGPL-2.1knowledge-basepre-trained - 2DMD dataset (🥉9 · ⭐ 4) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..
Apache-2material-defect - ANI-1 Dataset (🥉8 · ⭐ 93 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules.
MIT - MoleculeNet Leaderboard (🥉8 · ⭐ 80 · 💀) -
MITbenchmarking - GEOM (🥉7 · ⭐ 180 · 💀) - GEOM: Energy-annotated molecular conformations.
Unlicenseddrug-discovery - ANI-1x Datasets (🥉6 · ⭐ 51 · 💀) - The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules.
MIT - COMP6 Benchmark dataset (🥉6 · ⭐ 38 · 💀) - COMP6 Benchmark dataset for ML potentials.
MIT - Visual Graph Datasets (🥉6 · ⭐ 1) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations..
MIT - linear-regression-benchmarks (🥉5 · ⭐ 1 · 💀) - Data sets used for linear regression benchmarks.
MITbenchmarkingsingle-paper - OPTIMADE providers dashboard (🥉3 · ⭐ 1) - A dashboard of known providers.
Unlicensed - nep-data (🥉2 · ⭐ 9 · 💀) - Data related to the NEP machine-learned potential of GPUMD.
UnlicensedML-IAPMDtransport-phenomena
Data Structures
Projects that focus on providing data structures used in atomistic machine learning.
dpdata (🥇24 · ⭐ 180) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0
Metatensor (🥈19 · ⭐ 41) - Self-describing sparse tensor data format for atomistic machine learning and beyond. BSD-3 Rust C-lang C++ Python
-
GitHub (👨💻 19 · 🔀 12 · 📥 15K · 📦 7 · 📋 170 - 32% open · ⏱️ 01.05.2024):
it clone https://github.com/lab-cosmo/metatensor
mp-pyrho (🥈19 · ⭐ 34) - Tools for re-griding volumetric quantum chemistry data for machine-learning purposes. Custom ML-DFT
dlpack (🥉15 · ⭐ 850) - common in-memory tensor structure. Apache-2 C++
-
GitHub (👨💻 23 · 🔀 130 · 📋 65 - 35% open · ⏱️ 26.03.2024):
it clone https://github.com/dmlc/dlpack
Density functional theory (ML-DFT)
Projects and models that focus on quantities of DFT, such as density functional approximations (ML-DFA), the charge density, density of states, the Hamiltonian, etc.
JAX-DFT (🥇25 · ⭐ 33K) - This library provides basic building blocks that can construct DFT calculations as a differentiable program. Apache-2
-
GitHub (👨💻 780 · 🔀 7.6K · 📋 1.2K - 73% open · ⏱️ 30.04.2024):
it clone https://github.com/google-research/google-research
DM21 (🥇20 · ⭐ 13K · 💤) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described.. Apache-2
-
GitHub (👨💻 92 · 🔀 2.5K · 📋 310 - 55% open · ⏱️ 02.06.2023):
it clone https://github.com/deepmind/deepmind-research
MALA (🥇20 · ⭐ 76) - Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data. BSD-3
-
GitHub (👨💻 41 · 🔀 23 · 📋 240 - 11% open · ⏱️ 25.04.2024):
it clone https://github.com/mala-project/mala
QHNet (🥈13 · ⭐ 410) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 rep-learn
-
GitHub (👨💻 26 · 🔀 52 · 📋 12 - 16% open · ⏱️ 28.03.2024):
it clone https://github.com/divelab/AIRS
DeepH-pack (🥈12 · ⭐ 180) - Deep neural networks for density functional theory Hamiltonian. LGPL-3.0 Julia
-
GitHub (👨💻 8 · 🔀 32 · 📋 45 - 17% open · ⏱️ 29.12.2023):
it clone https://github.com/mzjb/DeepH-pack
DeePKS-kit (🥈10 · ⭐ 97) - a package for developing machine learning-based chemically accurate energy and density functional models. LGPL-3.0
-
GitHub (👨💻 7 · 🔀 32 · 📋 16 - 18% open · ⏱️ 13.04.2024):
it clone https://github.com/deepmodeling/deepks-kit
SALTED (🥈10 · ⭐ 20) - Symmetry-Adapted Learning of Three-dimensional Electron Densities. GPL-3.0
-
GitHub (👨💻 17 · 🔀 4 · 📋 5 - 20% open · ⏱️ 05.04.2024):
it clone https://github.com/andreagrisafi/SALTED
Grad DFT (🥈9 · ⭐ 65) - GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation.. Apache-2
-
GitHub (👨💻 4 · 🔀 4 · 📋 54 - 20% open · ⏱️ 13.02.2024):
it clone https://github.com/XanaduAI/GradDFT
charge-density-models (🥉5 · ⭐ 9) - Tools to build charge density models using ocpmodels. MIT
-
GitHub (🔀 3 · ⏱️ 29.11.2023):
it clone https://github.com/ulissigroup/charge-density-models
Show 16 hidden projects...
- NeuralXC (🥈10 · ⭐ 33 · 💀) - Implementation of a machine learned density functional.
BSD-3 - ACEhamiltonians (🥈10 · ⭐ 10 · 💀) - Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-..
MITJulia - PROPhet (🥈9 · ⭐ 62 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches.
GPL-3.0ML-IAPMDsingle-paperC++ - Libnxc (🥉7 · ⭐ 15 · 💀) - A library for using machine-learned exchange-correlation functionals for density-functional theory.
MPL-2.0C++Fortran - DeepH-E3 (🥉6 · ⭐ 59 · 💀) - General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian.
MITmagnetism - DeepDFT (🥉6 · ⭐ 49 · 💀) - Official implementation of DeepDFT model.
MIT - Mat2Spec (🥉6 · ⭐ 26 · 💀) -
MITspectroscopy - ML-DFT (🥉5 · ⭐ 22 · 💀) - A package for density functional approximation using machine learning.
MIT - xDeepH (🥉4 · ⭐ 26 · 💤) - Extended DeepH (xDeepH) method for magnetic materials.
LGPL-3.0magnetismJulia - APET (🥉4 · ⭐ 4 · 💤) - Atomic Positional Embedding-based Transformer.
GPL-3.0density-of-statestransformer - gprep (🥉4 · 💀) - Fitting DFTB repulsive potentials with GPR.
MITsingle-paper - DeepCDP (🥉3 · ⭐ 5 · 💤) - DeepCDP: Deep learning Charge Density Prediction.
Unlicensed - CSNN (🥉3 · ⭐ 2 · 💀) - Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning.
BSD-3 - A3MD (🥉2 · ⭐ 8 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities.
Unlicensedrepresentation-learningsingle-paper - MALADA (🥉2 · ⭐ 1 · 💤) - MALA Data Acquisition: Helpful tools to build data for MALA.
BSD-3 - kdft (🥉1 · ⭐ 2 · 💀) - The Kernel Density Functional (KDF) code allows generating ML based DFT functionals.
Unlicensed
Educational Resources
Tutorials, guides, cookbooks, recipes, etc.
🔗 Quantum Chemistry in the Age of Machine Learning - Book, 2022.
🔗 AL4MS 2023 workshop tutorials active-learning
Geometric GNN Dojo (🥇12 · ⭐ 420 · 💤) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge. MIT rep-learn
-
GitHub (👨💻 3 · 🔀 38 · ⏱️ 18.06.2023):
it clone https://github.com/chaitjo/geometric-gnn-dojo
Deep Learning for Molecules and Materials Book (🥇11 · ⭐ 580 · 💤) - Deep learning for molecules and materials book. Custom
-
GitHub (👨💻 19 · 🔀 110 · 📋 160 - 17% open · ⏱️ 02.07.2023):
it clone https://github.com/whitead/dmol-book
DSECOP (🥇11 · ⭐ 37) - This repository contains data science educational materials developed by DSECOP Fellows. CCO-1.0
-
GitHub (👨💻 13 · 🔀 24 · 📋 8 - 12% open · ⏱️ 14.04.2024):
it clone https://github.com/GDS-Education-Community-of-Practice/DSECOP
jarvis-tools-notebooks (🥈10 · ⭐ 50) - A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/. NIST
-
GitHub (👨💻 5 · 🔀 23 · ⏱️ 13.03.2024):
it clone https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks
iam-notebooks (🥈10 · ⭐ 23) - Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling. Apache-2
-
GitHub (👨💻 6 · 🔀 5 · ⏱️ 19.02.2024):
it clone https://github.com/ceriottm/iam-notebooks
OPTIMADE Tutorial Exercises (🥈9 · ⭐ 12 · 💤) - Tutorial exercises for the OPTIMADE API. MIT datasets
-
GitHub (👨💻 6 · 🔀 7 · ⏱️ 27.09.2023):
it clone https://github.com/Materials-Consortia/optimade-tutorial-exercises
BestPractices (🥈8 · ⭐ 160) - Things that you should (and should not) do in your Materials Informatics research. MIT
-
GitHub (👨💻 3 · 🔀 67 · 📋 7 - 71% open · ⏱️ 17.11.2023):
it clone https://github.com/anthony-wang/BestPractices
COSMO Software Cookbook (🥈8 · ⭐ 6) - The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules. BSD-3
-
GitHub (👨💻 9 · 🔀 1 · 📋 11 - 18% open · ⏱️ 24.04.2024):
it clone https://github.com/lab-cosmo/software-cookbook
MACE-tutorials (🥉6 · ⭐ 24 · 💤) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT ML-IAP rep-learn MD
-
GitHub (🔀 7 · ⏱️ 10.10.2023):
it clone https://github.com/ilyes319/mace-tutorials
Show 13 hidden projects...
- DeepLearningLifeSciences (🥇11 · ⭐ 330 · 💀) - Example code from the book Deep Learning for the Life Sciences.
MIT - RDKit Tutorials (🥈8 · ⭐ 240 · 💀) - Tutorials to learn how to work with the RDKit.
Custom - MAChINE (🥉7 · ⭐ 1 · 💤) - Client-Server Web App to introduce usage of ML in materials science to beginners.
MIT - AI4Science101 (🥉6 · ⭐ 82 · 💀) - AI for Science.
Unlicensed - Applied AI for Materials (🥉6 · ⭐ 54 · 💀) - Course materials for Applied AI for Materials Science and Engineering.
Unlicensed - Machine Learning for Materials Hard and Soft (🥉5 · ⭐ 35 · 💀) - ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft.
Unlicensed - Data Handling, DoE and Statistical Analysis for Material Chemists (🥉5 · ⭐ 1 · 💤) - Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University.
GPL-3.0 - ML-in-chemistry-101 (🥉4 · ⭐ 63 · 💀) - The course materials for Machine Learning in Chemistry 101.
Unlicensed - chemrev-gpr (🥉4 · ⭐ 6 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.
Unlicensed - MLDensity_tutorial (🥉2 · ⭐ 6 · 💀) - Tutorial files to work with ML for the charge density in molecules and solids.
Unlicensed - LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 3 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD..
UnlicensedML-IAPMDrep-eng - MALA Tutorial (🥉2 · ⭐ 2) - A full MALA hands-on tutorial.
Unlicensed - PiNN Lab (🥉2 · ⭐ 2 · 💤) -
GPL-3.0
Explainable Artificial intelligence (XAI)
Projects that focus on explainability and model interpretability in atomistic ML.
MEGAN: Multi Explanation Graph Attention Student (🥈6 · ⭐ 5) - Minimal implementation of graph attention student model architecture. MIT
-
GitHub (👨💻 2 · 🔀 1 · ⏱️ 22.04.2024):
it clone https://github.com/aimat-lab/graph_attention_student
MEGAN (🥈6 · ⭐ 5) - Minimal implementation of graph attention student model architecture. MIT XAI rep-learn
-
GitHub (👨💻 2 · 🔀 1 · ⏱️ 22.04.2024):
it clone https://github.com/aimat-lab/graph_attention_student
Show 1 hidden projects...
- Linear vs blackbox (🥉3 · ⭐ 2 · 💀) - Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning.
MITXAIsingle-paperrep-eng
Electronic structure methods (ML-ESM)
Projects and models that focus on quantities of electronic structure methods, which do not fit into either of the categories ML-WFT or ML-DFT.
Show 3 hidden projects...
- QDF for molecule (🥇9 · ⭐ 190 · 💀) - Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation..
MIT - e3psi (🥈3 · ⭐ 3) - Equivariant machine learning library for learning from electronic structures.
LGPL-3.0 - halex (🥈3 · ⭐ 2) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844.
Unlicensedexcited-states
General Tools
General tools for atomistic machine learning.
DeepChem (🥇37 · ⭐ 5.1K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology. MIT
-
GitHub (👨💻 240 · 🔀 1.6K · 📦 350 · 📋 1.7K - 26% open · ⏱️ 30.04.2024):
it clone https://github.com/deepchem/deepchem -
PyPi (📥 27K / month):
ip install deepchem -
Conda (📥 110K · ⏱️ 05.04.2024):
onda install -c conda-forge deepchem -
Docker Hub (📥 7.2K · ⭐ 5 · ⏱️ 24.04.2024):
ocker pull deepchemio/deepchem
QUIP (🥈24 · ⭐ 330) - libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io. GPL-2.0 MD ML-IAP rep-eng Fortran
-
GitHub (👨💻 81 · 🔀 120 · 📥 360 · 📦 33 · 📋 450 - 21% open · ⏱️ 04.04.2024):
it clone https://github.com/libAtoms/QUIP -
PyPi (📥 2.3K / month):
ip install quippy-ase -
Docker Hub (📥 9.9K · ⭐ 4 · ⏱️ 24.04.2023):
ocker pull libatomsquip/quip
JARVIS-Tools (🥈24 · ⭐ 270 · 📈) - JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:.. Custom
MAML (🥈22 · ⭐ 330 · 📉) - Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc. BSD-3
MAST-ML (🥈19 · ⭐ 95) - MAterials Simulation Toolkit for Machine Learning (MAST-ML). MIT
-
GitHub (👨💻 19 · 🔀 56 · 📥 86 · 📦 42 · 📋 210 - 10% open · ⏱️ 17.04.2024):
it clone https://github.com/uw-cmg/MAST-ML
Scikit-Matter (🥈15 · ⭐ 68) - A collection of scikit-learn compatible utilities that implement methods born out of the materials science and.. BSD-3 scikit-learn
Artificial Intelligence for Science (AIRS) (🥉13 · ⭐ 410) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 license rep-learn generative ML-IAP MD ML-DFT ML-WFT biomolecules
-
GitHub (👨💻 26 · 🔀 52 · 📋 12 - 16% open · ⏱️ 28.03.2024):
it clone https://github.com/divelab/AIRS
AMPtorch (🥉11 · ⭐ 60 · 💤) - AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch. GPL-3.0
-
GitHub (👨💻 14 · 🔀 32 · 📋 32 - 18% open · ⏱️ 16.07.2023):
it clone https://github.com/ulissigroup/amptorch
Equisolve (🥉6 · ⭐ 5 · 💤) - A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties.. BSD-3 ML-IAP
-
GitHub (👨💻 6 · 🔀 1 · 📋 23 - 82% open · ⏱️ 27.10.2023):
it clone https://github.com/lab-cosmo/equisolve
Show 10 hidden projects...
- QML (🥈16 · ⭐ 190 · 💀) - QML: Quantum Machine Learning.
MIT - Automatminer (🥈15 · ⭐ 130 · 💀) - An automatic engine for predicting materials properties.
Custom - OpenChem (🥉10 · ⭐ 660 · 💀) - OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research.
MIT - JAXChem (🥉7 · ⭐ 74 · 💀) - JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling.
MIT - uncertainty_benchmarking (🥉7 · ⭐ 36 · 💀) - Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions.
Unlicensedbenchmarkingprobabilistic - torchchem (🥉7 · ⭐ 34 · 💀) - An experimental repo for experimenting with PyTorch models.
MIT - ACEatoms (🥉4 · ⭐ 2 · 💀) - Generic code for modelling atomic properties using ACE.
CustomJulia - MLatom (🥉4) - Machine learning for atomistic simulations.
Custom - Magpie (🥉3) - Materials Agnostic Platform for Informatics and Exploration (Magpie).
MITJava - quantum-structure-ml (🥉2 · ⭐ 1 · 💀) - Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification..
Unlicensedmagnetismbenchmarking
Generative Models
Projects that implement generative models for atomistic ML.
GT4SD (🥇17 · ⭐ 300) - GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process. MIT pre-trained drug-discovery rep-learn
MoLeR (🥇16 · ⭐ 240) - Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation. MIT
SchNetPack G-SchNet (🥈10 · ⭐ 39) - G-SchNet extension for SchNetPack. MIT
-
GitHub (👨💻 3 · 🔀 8 · 📋 13 - 7% open · ⏱️ 07.11.2023):
it clone https://github.com/atomistic-machine-learning/schnetpack-gschnet
bVAE-IM (🥉8 · ⭐ 10 · 💤) - Implementation of Chemical Design with GPU-based Ising Machine. MIT QML single-paper
-
GitHub (🔀 3 · ⏱️ 11.07.2023):
it clone https://github.com/tsudalab/bVAE-IM
COATI (🥉7 · ⭐ 70) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space. Apache-2 drug-discovery pre-trained rep-learn
-
GitHub (👨💻 5 · 🔀 5 · ⏱️ 23.03.2024):
it clone https://github.com/terraytherapeutics/COATI
Show 6 hidden projects...
- synspace (🥈12 · ⭐ 35 · 💀) - Synthesis generative model.
MIT - EDM (🥈10 · ⭐ 380 · 💀) - E(3) Equivariant Diffusion Model for Molecule Generation in 3D.
MIT - G-SchNet (🥉8 · ⭐ 130 · 💀) - G-SchNet - a generative model for 3d molecular structures.
MIT - cG-SchNet (🥉8 · ⭐ 45 · 💀) - cG-SchNet - a conditional generative neural network for 3d molecular structures.
MIT - rxngenerator (🥉5 · ⭐ 11 · 💀) - A generative model for molecular generation via multi-step chemical reactions.
MIT - MolSLEPA (🥉5 · ⭐ 5 · 💀) - Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing.
MITXAI
Interatomic Potentials (ML-IAP)
Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and force fields (ML-FF) for molecular dynamics.
DeePMD-kit (🥇28 · ⭐ 1.4K) - A deep learning package for many-body potential energy representation and molecular dynamics. LGPL-3.0 C++
-
GitHub (👨💻 68 · 🔀 460 · 📥 35K · 📦 13 · 📋 660 - 14% open · ⏱️ 06.04.2024):
it clone https://github.com/deepmodeling/deepmd-kit -
PyPi (📥 2K / month):
ip install deepmd-kit -
Conda (📥 1K · ⏱️ 06.04.2024):
onda install -c deepmodeling deepmd-kit -
Docker Hub (📥 2.2K · ⭐ 1 · ⏱️ 04.03.2024):
ocker pull deepmodeling/deepmd-kit
DP-GEN (🥇23 · ⭐ 280) - The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field. LGPL-3.0 workflows
TorchMD-NET (🥇22 · ⭐ 280) - Neural network potentials. MIT MD rep-learn transformer pre-trained
CHGNet (🥇22 · ⭐ 190 · 📈) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov. Custom MD pre-trained electrostatics magnetism structure-relaxation
Pre-trained OCP models (🥈20 · ⭐ 600) - Pre-trained models released as part of the Open Catalyst Project. MIT pre-trained
-
GitHub (👨💻 36 · 🔀 200 · 📋 170 - 2% open · ⏱️ 25.04.2024):
it clone https://github.com/Open-Catalyst-Project/ocp
MACE (🥈20 · ⭐ 370) - MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing. MIT
-
GitHub (👨💻 24 · 🔀 130 · 📋 160 - 20% open · ⏱️ 30.04.2024):
it clone https://github.com/ACEsuit/mace
GPUMD (🥈20 · ⭐ 350) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials.. GPL-3.0 MD C++ electrostatics
-
GitHub (👨💻 27 · 🔀 110 · 📋 160 - 12% open · ⏱️ 01.05.2024):
it clone https://github.com/brucefan1983/GPUMD
apax (🥈18 · ⭐ 11 · ➕) - A flexible and performant framework for training machine learning potentials. MIT
M3GNet (🥈17 · ⭐ 210 · 💤) - Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art.. BSD-3
KLIFF (🥈16 · ⭐ 32) - KIM-based Learning-Integrated Fitting Framework for interatomic potentials. LGPL-2.1 probabilistic workflows
sGDML (🥈15 · ⭐ 140 · 💤) - sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model. MIT
Ultra-Fast Force Fields (UF3) (🥈15 · ⭐ 54) - UF3: a python library for generating ultra-fast interatomic potentials. Apache-2
wfl (🥈14 · ⭐ 21) - Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows. Unlicensed workflows HTC
-
GitHub (👨💻 16 · 🔀 15 · 📋 140 - 43% open · ⏱️ 25.04.2024):
it clone https://github.com/libAtoms/workflow
ANI-1 (🥈12 · ⭐ 220) - ANI-1 neural net potential with python interface (ASE). MIT
-
GitHub (👨💻 6 · 🔀 55 · 📋 37 - 43% open · ⏱️ 11.03.2024):
it clone https://github.com/isayev/ASE_ANI
DMFF (🥈12 · ⭐ 140) - DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable.. LGPL-3.0
-
GitHub (👨💻 14 · 🔀 40 · 📋 25 - 36% open · ⏱️ 12.01.2024):
it clone https://github.com/deepmodeling/DMFF
PiNN (🥈12 · ⭐ 100) - A Python library for building atomic neural networks. BSD-3
-
GitHub (👨💻 4 · 🔀 30 · 📋 6 - 16% open · ⏱️ 26.01.2024):
it clone https://github.com/Teoroo-CMC/PiNN -
Docker Hub (📥 230 · ⏱️ 26.01.2024):
ocker pull teoroo/pinn
Pacemaker (🥈11 · ⭐ 55) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom
Point Edge Transformer (PET) (🥈11 · ⭐ 10) - Point Edge Transformer. MIT rep-learn transformer
-
GitHub (👨💻 7 · 🔀 4 · ⏱️ 21.04.2024):
it clone https://github.com/serfg/pet
ACEfit (🥈11 · ⭐ 8) - MIT Julia
-
GitHub (👨💻 7 · 🔀 5 · 📋 55 - 40% open · ⏱️ 28.03.2024):
it clone https://github.com/ACEsuit/ACEfit.jl
Neural Force Field (🥉10 · ⭐ 210 · 💤) - Neural Network Force Field based on PyTorch. MIT pre-trained
-
GitHub (👨💻 10 · 🔀 48 · ⏱️ 25.07.2023):
it clone https://github.com/learningmatter-mit/NeuralForceField
tinker-hp (🥉10 · ⭐ 74) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs. Custom
-
GitHub (👨💻 10 · 🔀 19 · 📋 19 - 15% open · ⏱️ 10.04.2024):
it clone https://github.com/TinkerTools/tinker-hp
So3krates (MLFF) (🥉10 · ⭐ 51) - Build neural networks for machine learning force fields with JAX. MIT
-
GitHub (👨💻 4 · 🔀 11 · 📋 9 - 55% open · ⏱️ 16.01.2024):
it clone https://github.com/thorben-frank/mlff
Allegro (🥉9 · ⭐ 280 · 💤) - Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic.. MIT
-
GitHub (👨💻 2 · 🔀 41 · 📋 31 - 51% open · ⏱️ 08.05.2023):
it clone https://github.com/mir-group/allegro
DimeNet (🥉9 · ⭐ 270 · 💤) - DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and.. Custom
-
GitHub (👨💻 2 · 🔀 58 · 📦 1 · 📋 31 - 3% open · ⏱️ 03.10.2023):
it clone https://github.com/gasteigerjo/dimenet
ACE.jl (🥉9 · ⭐ 63 · 💤) - Parameterisation of Equivariant Properties of Particle Systems. Custom Julia
-
GitHub (👨💻 12 · 🔀 15 · 📋 82 - 29% open · ⏱️ 09.06.2023):
it clone https://github.com/ACEsuit/ACE.jl
GAP (🥉9 · ⭐ 35) - Gaussian Approximation Potential (GAP). Custom
-
GitHub (👨💻 13 · 🔀 20 · ⏱️ 20.03.2024):
it clone https://github.com/libAtoms/GAP
ACE1.jl (🥉9 · ⭐ 20) - Atomic Cluster Expansion for Modelling Invariant Atomic Properties. Custom Julia
-
GitHub (👨💻 9 · 🔀 6 · 📋 46 - 47% open · ⏱️ 14.03.2024):
it clone https://github.com/ACEsuit/ACE1.jl
TurboGAP (🥉8 · ⭐ 16) - The TurboGAP code. Custom Fortran
-
GitHub (👨💻 8 · 🔀 8 · 📋 7 - 57% open · ⏱️ 14.12.2023):
it clone https://github.com/mcaroba/turbogap
PyNEP (🥉7 · ⭐ 38) - A python interface of the machine learning potential NEP used in GPUMD. MIT
-
GitHub (👨💻 7 · 🔀 15 · 📋 10 - 40% open · ⏱️ 01.02.2024):
it clone https://github.com/bigd4/PyNEP
ALF (🥉7 · ⭐ 24) - A framework for performing active learning for training machine-learned interatomic potentials. Custom active-learning
-
GitHub (👨💻 5 · 🔀 11 · ⏱️ 29.01.2024):
it clone https://github.com/lanl/alf
MACE-Jax (🥉6 · ⭐ 47 · 💤) - Equivariant machine learning interatomic potentials in JAX. MIT
-
GitHub (👨💻 2 · 🔀 2 · 📋 4 - 50% open · ⏱️ 04.10.2023):
it clone https://github.com/ACEsuit/mace-jax
MLXDM (🥉6 · ⭐ 5) - A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K. MIT long-range
-
GitHub (👨💻 7 · 🔀 1 · ⏱️ 31.03.2024):
it clone https://github.com/RowleyGroup/MLXDM
ACE1Pack.jl (🥉6 · 💤) - Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials.. MIT Julia
-
GitHub (👨💻 11 · ⏱️ 21.08.2023):
it clone https://github.com/ACEsuit/ACE1pack.jl
Show 27 hidden projects...
- MEGNet (🥇22 · ⭐ 480 · 💀) - Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals.
BSD-3 - n2p2 (🥈13 · ⭐ 200 · 💀) - n2p2 - A Neural Network Potential Package.
GPL-3.0C++ - TensorMol (🥈12 · ⭐ 270 · 💀) - Tensorflow + Molecules = TensorMol.
GPL-3.0single-paper - SIMPLE-NN (🥈11 · ⭐ 45 · 💀) - SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network).
GPL-3.0 - NNsforMD (🥉10 · ⭐ 10 · 💀) - Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings.
MIT - SchNet (🥉9 · ⭐ 210 · 💀) - SchNet - a deep learning architecture for quantum chemistry.
MIT - GemNet (🥉9 · ⭐ 160 · 💀) - GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS..
Custom - AIMNet (🥉8 · ⭐ 81 · 💀) - Atoms In Molecules Neural Network Potential.
MITsingle-paper - SNAP (🥉8 · ⭐ 35 · 💀) - Repository for spectral neighbor analysis potential (SNAP) model development.
BSD-3 - Atomistic Adversarial Attacks (🥉8 · ⭐ 29 · 💀) - Code for performing adversarial attacks on atomistic systems using NN potentials.
MITprobabilistic - PhysNet (🥉7 · ⭐ 88 · 💀) - Code for training PhysNet models.
MITelectrostatics - SIMPLE-NN v2 (🥉7 · ⭐ 37) -
GPL-3.0 - calorine (🥉7 · ⭐ 12 · 💀) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264.
Custom - MLIP-3 (🥉6 · ⭐ 21 · 💀) - MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP).
BSD-2C++ - testing-framework (🥉6 · ⭐ 11 · 💀) - The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of..
Unlicensedbenchmarking - PANNA (🥉6 · ⭐ 8 · 💀) - A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic..
MITbenchmarking - Alchemical learning (🥉5 · ⭐ 2 · 💀) - Code for the Modeling high-entropy transition metal alloys with alchemical compression article.
BSD-3 - glp (🥉4 · ⭐ 16) - tools for graph-based machine-learning potentials in jax.
MIT - NequIP-JAX (🥉4 · ⭐ 14) - JAX implementation of the NequIP interatomic potential.
Unlicensed - TensorPotential (🥉4 · ⭐ 6 · 💤) - Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic..
Custom - ACE Workflows (🥉4 · 💤) - Workflow Examples for ACE Models.
UnlicensedJuliaworkflows - PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements.
MITcommunity-resourcevizJavaScript - MEGNetSparse (🥉3 · ⭐ 1 · 💤) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,..
MITmaterial-defect - SingleNN (🥉2 · ⭐ 7 · 💀) - An efficient package for training and executing neural-network interatomic potentials.
UnlicensedC++ - RuNNer (🥉2) - The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-..
GPL-3.0Fortran - Allegro-JAX (🥉1 · ⭐ 14) - JAX implementation of the Allegro interatomic potential.
Unlicensed - mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials...
UnlicensedJulia
Language Models
Projects that use (large) language models (LMs, LLMs) or natural language procesing (NLP) techniques for atomistic ML.
ChemNLP project (🥈14 · ⭐ 140) - ChemNLP project. MIT datasets
mat2vec (🥈12 · ⭐ 610 · 💤) - Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials.. MIT rep-learn
-
GitHub (👨💻 5 · 🔀 180 · 📋 24 - 29% open · ⏱️ 06.05.2023):
it clone https://github.com/materialsintelligence/mat2vec
MoLFormer (🥉9 · ⭐ 200 · 💤) - Repository for MolFormer. Apache-2 transformer pre-trained drug-discovery
-
GitHub (👨💻 5 · 🔀 37 · 📋 18 - 44% open · ⏱️ 16.10.2023):
it clone https://github.com/IBM/molformer
MolSkill (🥉9 · ⭐ 96 · 💤) - Extracting medicinal chemistry intuition via preference machine learning. MIT drug-discovery recommender
LLM-Prop (🥉8 · ⭐ 20 · 📈) - A repository for the LLM-Prop implementation. MIT
-
GitHub (👨💻 6 · 🔀 4 · ⏱️ 26.04.2024):
it clone https://github.com/vertaix/LLM-Prop
MAPI_LLM (🥉7 · ⭐ 7) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J. MIT dataset
-
GitHub (👨💻 2 · 🔀 1 · ⏱️ 11.04.2024):
it clone https://github.com/maykcaldas/MAPI_LLM
chemlift (🥉6 · ⭐ 27 · 💤) - Language-interfaced fine-tuning for chemistry. MIT
-
GitHub (👨💻 2 · 🔀 2 · 📋 18 - 61% open · ⏱️ 14.10.2023):
it clone https://github.com/lamalab-org/chemlift
SciBot (🥉6 · ⭐ 26) - SciBot is a simple demo of building a domain-specific chatbot for science. Unlicensed
-
GitHub (🔀 7 · ⏱️ 19.04.2024):
it clone https://github.com/CFN-softbio/SciBot
BERT-PSIE-TC (🥉5 · ⭐ 10 · 💤) - A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE.. MIT magnetism
-
GitHub (👨💻 2 · 🔀 3 · ⏱️ 18.08.2023):
it clone https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC
Show 4 hidden projects...
- ChemDataExtractor (🥈16 · ⭐ 280 · 💀) - Automatically extract chemical information from scientific documents.
MITliterature-data - nlcc (🥈11 · ⭐ 43 · 💀) - Natural language computational chemistry command line interface.
MITsingle-paper - ChemDataWriter (🥉4 · ⭐ 11 · 💤) - ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area.
MITliterature-data - CatBERTa (🥉3 · ⭐ 16) - Large Language Model for Catalyst Property Prediction.
Unlicensedtransformercatalysis
Materials Discovery
Projects that implement materials discovery methods using atomistic ML.
aviary (🥇11 · ⭐ 43) - The Wren sits on its Roost in the Aviary. MIT
-
GitHub (👨💻 4 · 🔀 10 · 📋 26 - 15% open · ⏱️ 02.04.2024):
it clone https://github.com/CompRhys/aviary
Materials Discovery: GNoME (🥈10 · ⭐ 800 · 🐣) - Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials. Apache-2 rep-learn datasets
-
GitHub (👨💻 2 · 🔀 120 · 📋 17 - 76% open · ⏱️ 02.12.2023):
it clone https://github.com/google-deepmind/materials_discovery
Show 7 hidden projects...
- BOSS (🥈7 · ⭐ 19 · 💀) - Bayesian Optimization Structure Search (BOSS).
Unlicensedprobabilistic - AGOX (🥈6 · ⭐ 12 · 💀) - AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional..
GPL-3.0structure-optimization - Computational Autonomy for Materials Discovery (CAMD) (🥈6 · ⭐ 1 · 💀) - Agent-based sequential learning software for materials discovery.
Apache-2 - closed-loop-acceleration-benchmarks (🥉4 · 💤) - Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational..
MITmaterials-discoveryactive-learningsingle-paper - SPINNER (🥉3 · ⭐ 10 · 💀) - SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random..
GPL-3.0C++structure-prediction - sl_discovery (🥉3 · ⭐ 5 · 💀) - Data processing and models related to Quantifying the performance of machine learning models in materials discovery.
Apache-2materials-discoverysingle-paper - CSPML (crystal structure prediction with machine learning-based element substitution) (🥉2 · ⭐ 15 · 💀) - Original implementation of CSPML.
Unlicensedstructure-prediction
Mathematical tools
Projects that implement mathematical objects used in atomistic machine learning.
gpax (🥇20 · ⭐ 180) - Gaussian Processes for Experimental Sciences. MIT probabilistic active-learning
KFAC-JAX (🥇18 · ⭐ 200) - Second Order Optimization and Curvature Estimation with K-FAC in JAX. Apache-2
SpheriCart (🥈14 · ⭐ 55) - Multi-language library for the calculation of spherical harmonics in Cartesian coordinates. Apache-2
Polynomials4ML.jl (🥈12 · ⭐ 12) - Polynomials for ML: fast evaluation, batching, differentiation. MIT Julia
-
GitHub (👨💻 10 · 🔀 5 · 📋 44 - 34% open · ⏱️ 11.03.2024):
it clone https://github.com/ACEsuit/Polynomials4ML.jl
lie-nn (🥈9 · ⭐ 27 · 💤) - Tools for building equivariant polynomials on reductive Lie groups. MIT rep-learn
-
GitHub (👨💻 3 · 🔀 1 · ⏱️ 20.06.2023):
it clone https://github.com/lie-nn/lie-nn
GElib (🥈9 · ⭐ 17) - C++/CUDA library for SO(3) equivariant operations. MPL-2.0 C++
-
GitHub (👨💻 4 · 🔀 3 · 📋 5 - 40% open · ⏱️ 26.04.2024):
it clone https://github.com/risi-kondor/GElib
COSMO Toolbox (🥉6 · ⭐ 6) - Assorted libraries and utilities for atomistic simulation analysis. Unlicensed C++
-
GitHub (👨💻 9 · 🔀 5 · ⏱️ 19.03.2024):
it clone https://github.com/lab-cosmo/toolbox
Show 4 hidden projects...
- cnine (🥉7 · ⭐ 4) - Cnine tensor library.
UnlicensedC++ - EquivariantOperators.jl (🥉5 · ⭐ 17 · 💤) -
MITJulia - torch_spex (🥉5 · ⭐ 3) - Spherical expansions in PyTorch.
Unlicensed - Wigner Kernels (🥉2 · ⭐ 1 · 💤) - Collection of programs to benchmark Wigner kernels.
Unlicensedbenchmarking
Molecular Dynamics
Projects that simplify the integration of molecular dynamics and atomistic machine learning.
FitSNAP (🥈15 · ⭐ 140) - Software for generating SNAP machine-learning interatomic potentials. GPL-2.0
openmm-torch (🥈14 · ⭐ 160 · 💤) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++
mlcolvar (🥈14 · ⭐ 77) - A unified framework for machine learning collective variables for enhanced sampling simulations. MIT enhanced-sampling
OpenMM-ML (🥈14 · ⭐ 69) - High level API for using machine learning models in OpenMM simulations. MIT ML-IAP
pair_allegro (🥉8 · ⭐ 30 · 💤) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support. MIT ML-IAP rep-learn
-
GitHub (👨💻 2 · 🔀 6 · 📋 21 - 19% open · ⏱️ 27.06.2023):
it clone https://github.com/mir-group/pair_allegro
PACE (🥉8 · ⭐ 22) - The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,.. Custom
-
GitHub (👨💻 6 · 🔀 10 · ⏱️ 27.11.2023):
it clone https://github.com/ICAMS/lammps-user-pace
SOMD (🥉7 · ⭐ 11) - Molecular dynamics package designed for the SIESTA DFT code. AGPL-3.0 ML-IAP active-learning
-
GitHub (🔀 2 · ⏱️ 29.04.2024):
it clone https://github.com/initqp/somd
Show 2 hidden projects...
- pair_nequip (🥉10 · ⭐ 33 · 💀) - LAMMPS pair style for NequIP.
MITML-IAPrep-learn - interface-lammps-mlip-3 (🥉3 · ⭐ 5 · 💀) - An interface between LAMMPS and MLIP (version 3).
GPL-2.0
Reinforcement Learning
Projects that focus on reinforcement learning for atomistic ML.
Show 2 hidden projects...
- ReLeaSE (🥇11 · ⭐ 340 · 💀) - Deep Reinforcement Learning for de-novo Drug Design.
MITdrug-discovery - CatGym (🥉6 · ⭐ 11 · 💀) - Surface segregation using Deep Reinforcement Learning.
GPL
Representation Engineering
Projects that offer implementations of representations aka descriptors, fingerprints of atomistic systems, and models built with them, aka feature engineering.
cdk (🥇24 · ⭐ 470) - The Chemistry Development Kit. LGPL-2.1 cheminformatics Java
DScribe (🥇22 · ⭐ 370 · 💤) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2
MODNet (🥇17 · ⭐ 68) - MODNet: a framework for machine learning materials properties. MIT pre-trained small-data transfer-learning
-
GitHub (👨💻 8 · 🔀 31 · 📦 5 · 📋 41 - 36% open · ⏱️ 05.04.2024):
it clone https://github.com/ppdebreuck/modnet
Librascal (🥈13 · ⭐ 79) - A scalable and versatile library to generate representations for atomic-scale learning. LGPL-2.1
-
GitHub (👨💻 29 · 🔀 19 · 📋 230 - 43% open · ⏱️ 30.11.2023):
it clone https://github.com/lab-cosmo/librascal
SISSO (🥈12 · ⭐ 220 · 💤) - A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models. Apache-2 Fortran
-
GitHub (👨💻 3 · 🔀 72 · 📋 59 - 3% open · ⏱️ 12.09.2023):
it clone https://github.com/rouyang2017/SISSO
Rascaline (🥈12 · ⭐ 43) - Computing representations for atomistic machine learning. BSD-3 Rust C++
-
GitHub (👨💻 14 · 🔀 12 · 📋 62 - 51% open · ⏱️ 23.04.2024):
it clone https://github.com/Luthaf/rascaline
NICE (🥉7 · ⭐ 13) - NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and.. MIT
-
GitHub (👨💻 4 · 🔀 3 · 📋 3 - 66% open · ⏱️ 15.04.2024):
it clone https://github.com/lab-cosmo/nice
Show 14 hidden projects...
- CatLearn (🥈16 · ⭐ 96 · 💀) -
GPL-3.0surface-science - cmlkit (🥈11 · ⭐ 33 · 💀) - tools for machine learning in condensed matter physics and quantum chemistry.
MITbenchmarking - CBFV (🥉9 · ⭐ 21 · 💀) - Tool to quickly create a composition-based feature vector.
Unlicensed - SkipAtom (🥉7 · ⭐ 23 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model.
MIT - pyLODE (🥉7 · ⭐ 3 · 💤) - Pythonic implementation of LOng Distance Equivariants.
Apache-2electrostatics - milad (🥉6 · ⭐ 28 · 💀) - Moment Invariants Local Atomic Descriptor.
GPL-3.0generative - SA-GPR (🥉6 · ⭐ 17 · 💀) - Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR).
LGPL-3.0C-lang - fplib (🥉6 · ⭐ 7 · 💀) - a fingerprint library.
MITC-langsingle-paper - SOAPxx (🥉6 · ⭐ 7 · 💀) - A SOAP implementation.
GPL-2.0C++ - soap_turbo (🥉6 · ⭐ 4 · 💤) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP.
CustomFortran - SISSO++ (🥉5 · ⭐ 3 · 💀) - C++ Implementation of SISSO with python bindings.
Apache-2C++ - magnetism-prediction (🥉4 · ⭐ 1 · 💤) - DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides.
Apache-2magnetismsingle-paper - ML-for-CurieTemp-Predictions (🥉3 · ⭐ 1 · 💤) - Machine Learning Predictions of High-Curie-Temperature Materials.
MITsingle-papermagnetism - AMP (🥉2) - Amp is an open-source package designed to easily bring machine-learning to atomistic calculations.
Unlicensed
Representation Learning
General models that learn a representations aka embeddings of atomistic systems, such as message-passing neural networks (MPNN).
Deep Graph Library (DGL) (🥇38 · ⭐ 13K) - Python package built to ease deep learning on graph, on top of existing DL frameworks. Apache-2
PyG Models (🥇29 · ⭐ 20K) - Representation learning models implemented in PyTorch Geometric. MIT general-ml
-
GitHub (👨💻 490 · 🔀 3.4K · 📋 3.4K - 23% open · ⏱️ 30.04.2024):
it clone https://github.com/pyg-team/pytorch_geometric
SchNetPack (🥇27 · ⭐ 730 · 📈) - SchNetPack - Deep Neural Networks for Atomistic Systems. MIT
NVIDIA Deep Learning Examples for Tensor Cores (🥇21 · ⭐ 13K) - State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and.. Custom educational drug-discovery
-
GitHub (👨💻 120 · 🔀 2.9K · 📋 800 - 30% open · ⏱️ 04.04.2024):
it clone https://github.com/NVIDIA/DeepLearningExamples
DIG: Dive into Graphs (🥇21 · ⭐ 1.8K) - A library for graph deep learning research. GPL-3.0
MatGL (Materials Graph Library) (🥇21 · ⭐ 210) - Graph deep learning library for materials. BSD-3
ocp (🥈20 · ⭐ 600) - ocp is the Open Catalyst Projects library of state-of-the-art machine learning algorithms for catalysis. MIT
-
GitHub (👨💻 36 · 🔀 200 · 📋 170 - 2% open · ⏱️ 25.04.2024):
it clone https://github.com/Open-Catalyst-Project/ocp
matsciml (🥈17 · ⭐ 120) - Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery.. MIT workflows benchmarking
-
GitHub (👨💻 11 · 🔀 15 · 📋 43 - 27% open · ⏱️ 27.04.2024):
it clone https://github.com/IntelLabs/matsciml
Uni-Mol (🥈14 · ⭐ 540) - Official Repository for the Uni-Mol Series Methods. MIT pre-trained
-
GitHub (👨💻 14 · 🔀 100 · 📥 12K · 📋 130 - 39% open · ⏱️ 26.04.2024):
it clone https://github.com/dptech-corp/Uni-Mol
escnn (🥈13 · ⭐ 310 · 💤) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom
hippynn (🥈12 · ⭐ 53) - python library for atomistic machine learning. Custom workflows
-
GitHub (👨💻 12 · 🔀 21 · 📋 12 - 33% open · ⏱️ 30.04.2024):
it clone https://github.com/lanl/hippynn
Compositionally-Restricted Attention-Based Network (CrabNet) (🥈12 · ⭐ 11 · 💤) - Predict materials properties using only the composition information!. MIT
Equiformer (🥉8 · ⭐ 170 · 💤) - [ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. MIT transformer
-
GitHub (👨💻 2 · 🔀 33 · 📋 12 - 41% open · ⏱️ 21.06.2023):
it clone https://github.com/atomicarchitects/equiformer
graphite (🥉8 · ⭐ 48) - A repository for implementing graph network models based on atomic structures. MIT
-
GitHub (👨💻 2 · 🔀 9 · 📦 10 · 📋 3 - 66% open · ⏱️ 12.12.2023):
it clone https://github.com/llnl/graphite
DeeperGATGNN (🥉8 · ⭐ 43) - Scalable graph neural networks for materials property prediction. MIT
-
GitHub (👨💻 3 · 🔀 7 · ⏱️ 19.01.2024):
it clone https://github.com/usccolumbia/deeperGATGNN
UVVisML (🥉8 · ⭐ 17 · 💤) - Predict optical properties of molecules with machine learning. MIT optical-properties single-paper probabilistic
-
GitHub (🔀 6 · ⏱️ 26.05.2023):
it clone https://github.com/learningmatter-mit/uvvisml
AdsorbML (🥉7 · ⭐ 30 · 💤) - MIT surface-science single-paper
-
GitHub (👨💻 5 · 🔀 4 · 📋 3 - 66% open · ⏱️ 31.07.2023):
it clone https://github.com/Open-Catalyst-Project/AdsorbML
escnn_jax (🥉7 · ⭐ 25 · 💤) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom
ML4pXRDs (🥉7 · 💤) - Contains code to train neural networks based on simulated powder XRDs from synthetic crystals. MIT XRD single-paper
-
GitHub (📥 2 · ⏱️ 14.07.2023):
it clone https://github.com/aimat-lab/ML4pXRDs
EquiformerV2 (🥉6 · ⭐ 140) - [ICLR24] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. MIT
-
GitHub (👨💻 2 · 🔀 20 · ⏱️ 01.05.2024):
it clone https://github.com/atomicarchitects/equiformer_v2
MACE-Layer (🥉6 · ⭐ 30 · 💤) - Higher order equivariant graph neural networks for 3D point clouds. MIT
-
GitHub (👨💻 2 · 🔀 5 · ⏱️ 06.06.2023):
it clone https://github.com/ACEsuit/mace-layer
Show 30 hidden projects...
- dgl-lifesci (🥇23 · ⭐ 680 · 💀) - Python package for graph neural networks in chemistry and biology.
Apache-2 - benchmarking-gnns (🥈14 · ⭐ 2.4K · 💀) - Repository for benchmarking graph neural networks.
MITsingle-paperbenchmarking - Crystal Graph Convolutional Neural Networks (CGCNN) (🥈12 · ⭐ 590 · 💀) - Crystal graph convolutional neural networks for predicting material properties.
MIT - Neural fingerprint (nfp) (🥈12 · ⭐ 57 · 💀) - Keras layers for end-to-end learning with rdkit and pymatgen.
Custom - GDC (🥈10 · ⭐ 250 · 💀) - Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019).
MITgenerative - SE(3)-Transformers (🥈9 · ⭐ 460 · 💀) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503.
MITsingle-papertransformer - molecularGNN_smiles (🥈9 · ⭐ 280 · 💀) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius..
Apache-2 - GATGNN: Global Attention Graph Neural Network (🥈9 · ⭐ 64 · 💀) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials..
MIT - ai4material_design (🥈9 · ⭐ 4) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..
Apache-2pre-trainedmaterial-defect - FAENet (🥉8 · ⭐ 24 · 💤) -
MIT - CGAT (🥉8 · ⭐ 23 · 💀) - Crystal graph attention neural networks for materials prediction.
MIT - T-e3nn (🥉8 · ⭐ 8 · 💀) - Time-reversal Euclidean neural networks based on e3nn.
MITmagnetism - DTNN (🥉7 · ⭐ 77 · 💀) - Deep Tensor Neural Network.
MIT - Cormorant (🥉7 · ⭐ 59 · 💀) - Codebase for Cormorant Neural Networks.
Custom - tensorfieldnetworks (🥉6 · ⭐ 150 · 💀) -
MIT - charge_transfer_nnp (🥉6 · ⭐ 27 · 💀) - Graph neural network potential with charge transfer.
MITelectrostatics - GLAMOUR (🥉6 · ⭐ 18 · 💀) - Graph Learning over Macromolecule Representations.
MITsingle-paper - Autobahn (🥉5 · ⭐ 30 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks.
MIT - FieldSchNet (🥉5 · ⭐ 15 · 💀) -
MIT - SCFNN (🥉5 · ⭐ 15 · 💀) - Self-consistent determination of long-range electrostatics in neural network potentials.
MITC++electrostaticssingle-paper - CraTENet (🥉5 · ⭐ 10 · 💀) - An attention-based deep neural network for thermoelectric transport properties.
MITtransport-phenomena - Per-Site CGCNN (🥉5 · ⭐ 1 · 💤) - Crystal graph convolutional neural networks for predicting material properties.
MITpre-trainedsingle-paper - Per-site PAiNN (🥉5 · ⭐ 1 · 💤) - Fork of PaiNN for PerovskiteOrderingGCNNs.
MITprobabilisticpre-trainedsingle-paper - Graph Transport Network (🥉4 · ⭐ 16 · 💀) - Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,..
Customtransport-phenomena - Atom2Vec (🥉3 · ⭐ 29) - Atom2Vec: a simple way to describe atoms for machine learning.
Unlicensed - atom_by_atom (🥉3 · ⭐ 5 · 💤) - Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning.
Unlicensedsurface-sciencesingle-paper - Element encoder (🥉3 · ⭐ 5 · 💀) - Autoencoder neural network to compress properties of atomic species into a vector representation.
GPL-3.0single-paper - gkx: Green-Kubo Method in JAX (🥉3 · ⭐ 2) - Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast.
MITtransport-phenomena - Point Edge Transformer (🥉2) - Smooth, exact rotational symmetrization for deep learning on point clouds.
CC-BY-4.0 - SphericalNet (🥉1 · ⭐ 3 · 💀) - Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..
Unlicensed
Unsupervised Learning
Projects that focus on unsupervised learning (USL) for atomistic ML, such as dimensionality reduction, clustering and visualization.
ASAP (🥈11 · ⭐ 130 · 💤) - ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures. MIT
-
GitHub (👨💻 6 · 🔀 27 · 📦 5 · 📋 24 - 25% open · ⏱️ 30.08.2023):
it clone https://github.com/BingqingCheng/ASAP
Sketchmap (🥈8 · ⭐ 43 · 💤) - Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular. GPL-3.0 C++
-
GitHub (👨💻 8 · 🔀 10 · 📋 8 - 37% open · ⏱️ 24.05.2023):
it clone https://github.com/lab-cosmo/sketchmap
Show 4 hidden projects...
- paper-ml-robustness-material-property (🥉4 · ⭐ 3 · 💀) -
BSD-3datasetssingle-paper - Coarse-Graining-Auto-encoders (🥉3 · ⭐ 20 · 💀) -
Unlicensedsingle-paper - KmdPlus (🥉2 · ⭐ 3 · 💤) - This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with..
Unlicensed - Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF) ( ⭐ 2) - Provides a workflow to obtain clustering of local environments in dataset of structures.
Unlicensed
Visualization
Projects that focus on visualization (viz.) for atomistic ML.
pymatviz (🥇18 · ⭐ 120 · 📈) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic
Chemiscope (🥉16 · ⭐ 110) - An interactive structure/property explorer for materials and molecules. BSD-3 JavaScript
Wavefunction methods (ML-WFT)
Projects and models that focus on quantities of wavefunction theory methods, such as Monte Carlo techniques like deep learning variational Monte Carlo (DL-VMC), quantum chemistry methods, etc.
FermiNet (🥈14 · ⭐ 640) - An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations. Apache-2 transformer
-
GitHub (👨💻 18 · 🔀 110 · ⏱️ 15.04.2024):
it clone https://github.com/deepmind/ferminet
DeepErwin (🥉10 · ⭐ 42) - DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions.. Custom
Show 1 hidden projects...
Others
pretrained-gnns (🥇10 · ⭐ 920 · 💤) - Strategies for Pre-training Graph Neural Networks. MIT pre-trained
-
GitHub (👨💻 2 · 🔀 160 · 📋 61 - 52% open · ⏱️ 29.07.2023):
it clone https://github.com/snap-stanford/pretrain-gnns
Show 1 hidden projects...
Contribution
Contributions are encouraged and always welcome! If you like to add or update projects, choose one of the following ways:
- Open an issue by selecting one of the provided categories from the issue page and fill in the requested information.
- Modify the projects.yaml with your additions or changes, and submit a pull request. This can also be done directly via the Github UI.
If you like to contribute to or share suggestions regarding the project metadata collection or markdown generation, please refer to the best-of-generator repository. If you like to create your own best-of list, we recommend to follow this guide.
For more information on how to add or update projects, please read the contribution guidelines. By participating in this project, you agree to abide by its Code of Conduct.