ResNet-decoder
ResNet-decoder copied to clipboard
reconstruction from resnet50 decoder not exactly the right dimensions
Thank you for the great work. I am trying to test the encoding and decoding via ResNet50 using the following code:
enc_net = enc.ResNetEncoder(enc.Bottleneck, [3, 4, 6, 3], return_indices=True).to(
"cuda"
)
summary(enc_net, [2, 3, 224, 224])
test_input = torch.rand(2, 3, 224, 224).to("cuda")
print("in shape: ", test_input.shape)
out, indices = enc_net(test_input)
print("out encoder: ", out.shape)
print("out encoder indicies: ", indices.shape)
netD = ResNet50_Decoder(Bottleneck, [3, 4, 6, 3])
netD.to("cuda")
rec = netD(out, indices)
print("recon shape: ", rec.shape)
but I am seeing a small discrepency in reconstruction shape:
in shape: torch.Size([2, 3, 224, 224])
out encoder: torch.Size([2, 2048, 1, 1])
out encoder indicies: torch.Size([2, 64, 56, 56])
recon shape: torch.Size([2, 3, 223, 223])
223 vs. 224 in the pixel dimension. any tips - did you get this too? thanks!