ICCV2021 |
CUHK, HUAWEI Noah |
Pyramid R-CNN:Towards Better Performance and Adaptability for 3D Object Detection |
det:kitti,Waymo |
ICCV2021 |
QCraft |
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving |
tracking |
ICCV2021(oral) |
Tsinghua |
PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers |
point completion |
ICCV2021 |
CUHK, HUAWEI Noah |
VoTr: Voxel Transformer for 3D Object Detection |
det:kitti,Waymo |
ICCV2021 |
USC, Waymo |
SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation |
det:kitti,Waymo |
ICCV2021 |
Zhejiang University, DAMO Academy |
Improving 3D Object Detection with Channel-wise Transformer |
det:kitti, Waymo |
ICCV2021 |
FAIR |
An End-to-End Transformer Model for 3D Object Detection |
det:ScanNet |
CVPR2021 |
Southeast University, NUST |
SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud |
det:kitti |
CVPR2021 |
Yonsei University |
HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection |
det:kitti |
CVPR2021 |
CUHK |
SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud) |
det:kitti |
CVPR2021 |
Waymo, Google brain |
To the Point: Efficient 3D Object Detection in the Range Image with Graph Convolution Kernels |
det:Waymo |
CVPR2021 |
TuSimple |
LiDAR R-CNN: An Efficient and Universal 3D Object Detector |
det:kitti,Waymo |
CVPR2021 |
beihang |
Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds |
indoor det |
CVPR2021 |
University of Hong Kong |
ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection |
domain adaptation:kitti,waymo,nuScenes |
CVPR2021 |
Stanford University |
3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection |
semi supervised det:kitti |
CVPR2021 |
CUHK |
Bidirectional Projection Network for Cross Dimension Scene Understanding |
2D,3D seg |
CVPR2021 |
Tsinghua University |
PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds |
estimate scene flow from point clouds |
CVPR2021 |
HKUST |
FFB6D:A Full Flow Bidirectional Fusion Network for 6D Pose Estimation |
RGBD:fuse RGB & D |
CVPR2021 |
CUHK |
Point Cloud Upsampling via Disentangled Refinement |
generative model & upsample |
CVPR2021 |
Peking University |
Diffusion Probabilistic Models for 3D Point Cloud Generation |
generative model & upsample(best paper finalist) |
CVPR2021 |
Stanford University |
Rethinking Sampling in 3D Point Cloud GANs |
generative model & upsample |
CVPR2021WAD |
Horizon Robotics |
1st Place Solution for Waymo Open Dataset Challenge |
det: Waymo |
CVPR2021 |
ReLER |
Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos. |
Point Cloud Videos |
ICLR2021 |
National University of Singapore |
PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences |
point cloud sequences/vedio |
ICRA2021 |
BNRist, Tsinghua |
FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection |
det:kitti |
AAAI2021 |
CUHK |
CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud |
det:kitti |
AAAI2021 |
USTC |
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection |
det:kitti |
arXiv 2021.3 |
CUHK, Google, Waymo |
3D-MAN: 3D Multi-frame Attention Network for Object Detection |
det:Waymo |
arXiv 2021.4 |
USTC,MSRA |
Group-Free 3D Object Detection via Transformers |
indoor det |
arXiv 2021.4 |
University of Maryland, Fudan |
M3DETR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers |
det:kitti,Waymo |
arXiv 2021.5 |
Renmin University of China |
Boundary-Aware 3D Object Detection from Point Clouds |
det:kitti |
arXiv 2021.5 |
Zhejiang University |
X-view: Non-egocentric Multi-View 3D Object Detector |
det:kitti, nuScenes |
arXiv 2021.6 |
Baidu |
FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object Detection |
det:nuScenes |
arXiv 2021.6 |
Google, Waymo |
RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection |
det:Waymo |
arXiv 2021.7 |
Google, Waymo |
Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of AdverseWeather Conditions for 3D Object Detection |
3D augmentation |
arXiv 2021.7 |
HUKST |
DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic Voxelization |
det:kitti |
arXiv 2021.8 |
Horizon |
Real-Time Anchor-Free Single-Stage 3D Detection with IoU-Awareness |
det:Waymo |
arXiv 2021.8 |
Xi'an Jiaotong University |
MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection |
det:kitti |
arXiv 2021.8 |
Baidu |
AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection |
det:kitti |
ACM MM21 |
Zhejiang University |
From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to-Point Decoder |
det:kitti |
ACM MM21 |
Zhejiang University |
Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud |
det:kitti |