MZSR icon indicating copy to clipboard operation
MZSR copied to clipboard

About the range of lambda of isotropic Gaussian blur kernel

Open liujianzhao6328057 opened this issue 4 years ago • 4 comments

Thanks for your great job! I have read the paper but I cannot find the the the range of lambda when you synthesize the isotropic Gaussian blur kernel for training.
I set the sigma to np.asarray([[lamda, 0],[0, lamda]]) to synthesize the isotropic Gaussian blur kernel, is that right ?

liujianzhao6328057 avatar Apr 13 '20 03:04 liujianzhao6328057

It is correct for isotropic Gaussian blur kernels. The range of lambda is from 1.0 to 5.0 for scaling factor (X2). We randomly sampled the lambda when generating the blur kernel for training.

JWSoh avatar May 13 '20 07:05 JWSoh

Please @liujianzhao6328057 I'm facing a problem when i load the pretrained model , specially when it reads the checkpoint this is the error .. how did you kindly solve it please ??

NotFoundError (see above for traceback): Key MODEL/conv7/kernel/Adam_3 not found in checkpoint [[Node: save/RestoreV2_69 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_69/tensor_names, save/RestoreV2_69/shape_and_slices)]]

BassantTolba1234 avatar Dec 21 '20 09:12 BassantTolba1234

Please @JWSoh I'm facing a problem when i load the pretrained model , specially when it reads the checkpoint this is the error .. how did you kindly solve it please ??

NotFoundError (see above for traceback): Key MODEL/conv7/kernel/Adam_3 not found in checkpoint [[Node: save/RestoreV2_69 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_69/tensor_names, save/RestoreV2_69/shape_and_slices)]]

BassantTolba1234 avatar Dec 21 '20 09:12 BassantTolba1234

Please can you kindly explain me how to calculate this weight loss ?

def get_loss_weights(self): loss_weights = tf.ones(shape=[self.TASK_ITER]) * (1.0/self.TASK_ITER) decay_rate = 1.0 / self.TASK_ITER / (10000 / 3) min_value= 0.03 / self.TASK_ITER

    loss_weights_pre = tf.maximum(loss_weights[:-1] - (tf.multiply(tf.to_float(self.global_step), decay_rate)), min_value)

    loss_weight_cur= tf.minimum(loss_weights[-1] + (tf.multiply(tf.to_float(self.global_step),(self.TASK_ITER- 1) * decay_rate)), 1.0 - ((self.TASK_ITER - 1) * min_value))
    loss_weights = tf.concat([[loss_weights_pre], [[loss_weight_cur]]], axis=1)
    return loss_weights

BassantTolba1234 avatar Jan 06 '21 10:01 BassantTolba1234