xtuner
xtuner copied to clipboard
LLaVa phi-3 sft 报错 ConnectionResetError: [Errno 104] Connection reset by peer
指令:
Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, CLIPImageProcessor, CLIPVisionModel)
from xtuner.dataset import ConcatDataset, LLaVADataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory from xtuner.dataset.samplers import LengthGroupedSampler from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook from xtuner.engine.runner import TrainLoop from xtuner.model import LLaVAModel from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
PART 1 Settings
#######################################################################
Model
llm_name_or_path = 'microsoft/Phi-3-mini-4k-instruct' visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
Specify the pretrained pth
pretrained_pth = './work_dirs/llava_phi3_mini_4k_instruct_clip_vit_large_p14_336_e1_gpu8_sharegpt4v_pretrain/iter_9742.pth' # noqa: E501
Data
data_root = './data/internvl_sft/'
sharegpt4v_caption_data_path = data_root + 'sharegpt4v_instruct_gpt4-vision_cap100k.jsonl' # noqa: E501 sharegpt4v_caption_image_folder = data_root + 'data'
llava_data_path = data_root + 'llava_instruct_150k_zh.jsonl' llava_image_folder = data_root + 'data/coco'
sharegpt4v_data_path = data_root + 'sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.jsonl' # noqa: E501 sharegpt4v_image_folder = data_root + 'data'
dvqa_data_path = data_root + 'dvqa_train_200k.jsonl' dvqa_image_folder = data_root + 'data/dvqa'
chartqa_data_path = data_root + 'chartqa_train_18k.jsonl' chartqa_image_folder = data_root + 'data/chartqa'
ai2d_data_path = data_root + 'ai2d_train_12k.jsonl' ai2d_image_folder = data_root + 'data/ai2d'
docvqa_data_path = data_root + 'docvqa_train_10k.jsonl' docvqa_image_folder = data_root + 'data/docvqa'
geoqa_data_path = data_root + 'geoqa+.jsonl' geoqa_image_folder = data_root + 'data/geoqa+'
synthdog_data_path = data_root + 'synthdog_en.jsonl' synthdog_image_folder = data_root + 'data/synthdog-en'
prompt_template = PROMPT_TEMPLATE.phi3_chat max_length = int(4096 - (336 / 14)**2)
Scheduler & Optimizer
batch_size = 8 # per_device accumulative_counts = 2 dataloader_num_workers = 4 max_epochs = 2 optim_type = AdamW lr = 2e-5 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip warmup_ratio = 0.03
Save
save_steps = 5000 save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
Evaluate the generation performance during the training
evaluation_freq = 5000 SYSTEM = '' evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg' evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
#######################################################################
PART 2 Model & Tokenizer & Image Processor
####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=llm_name_or_path, trust_remote_code=True, padding_side='right')
image_processor = dict( type=CLIPImageProcessor.from_pretrained, pretrained_model_name_or_path=visual_encoder_name_or_path, trust_remote_code=True)
model = dict( type=LLaVAModel, freeze_llm=False, freeze_visual_encoder=False, pretrained_pth=pretrained_pth, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=llm_name_or_path, trust_remote_code=True), visual_encoder=dict( type=CLIPVisionModel.from_pretrained, pretrained_model_name_or_path=visual_encoder_name_or_path))
#######################################################################
PART 3 Dataset & Dataloader
####################################################################### sharegpt4v_caption_dataset = dict( type=LLaVADataset, data_path=sharegpt4v_caption_data_path, image_folder=sharegpt4v_caption_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
llava_dataset = dict( type=LLaVADataset, data_path=llava_data_path, image_folder=llava_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
sharegpt4v_dataset = dict( type=LLaVADataset, data_path=sharegpt4v_data_path, image_folder=sharegpt4v_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
dvqa_dataset = dict( type=LLaVADataset, data_path=dvqa_data_path, image_folder=dvqa_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
chartqa_dataset = dict( type=LLaVADataset, data_path=chartqa_data_path, image_folder=chartqa_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
ai2d_dataset = dict( type=LLaVADataset, data_path=ai2d_data_path, image_folder=ai2d_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
docvqa_dataset = dict( type=LLaVADataset, data_path=docvqa_data_path, image_folder=docvqa_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
geoqa_dataset = dict( type=LLaVADataset, data_path=geoqa_data_path, image_folder=geoqa_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
synthdog_dataset = dict( type=LLaVADataset, data_path=synthdog_data_path, image_folder=synthdog_image_folder, tokenizer=tokenizer, image_processor=image_processor, dataset_map_fn=llava_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), max_length=max_length, pad_image_to_square=True)
train_dataset = dict( type=ConcatDataset, datasets=[ sharegpt4v_caption_dataset, llava_dataset, sharegpt4v_dataset, dvqa_dataset, chartqa_dataset, ai2d_dataset, docvqa_dataset, geoqa_dataset, synthdog_dataset ])
train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, pin_memory=True, dataset=train_dataset, sampler=dict( type=LengthGroupedSampler, length_property='modality_length', per_device_batch_size=batch_size * accumulative_counts), collate_fn=dict(type=default_collate_fn))
#######################################################################
PART 4 Scheduler & Optimizer
#######################################################################
optimizer
optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16')
learning policy
More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [ dict( type=LinearLR, start_factor=1e-5, by_epoch=True, begin=0, end=warmup_ratio * max_epochs, convert_to_iter_based=True), dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, begin=warmup_ratio * max_epochs, end=max_epochs, convert_to_iter_based=True) ]
train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
PART 5 Runtime
#######################################################################
Log the dialogue periodically during the training process, optional
custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, image_processor=image_processor, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, evaluation_images=evaluation_images, system=SYSTEM, prompt_template=prompt_template) ]
configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per save_steps
.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
configure environment
env_cfg = dict( # whether to enable cudnn benchmark cudnn_benchmark=False, # set multi process parameters mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # set distributed parameters dist_cfg=dict(backend='nccl'), )
set visualizer
visualizer = None
set log level
log_level = 'INFO'
load from which checkpoint
load_from = None
whether to resume training from the loaded checkpoint
resume = False
Defaults to use random seed and disable deterministic
randomness = dict(seed=None, deterministic=False)
set log processor
log_processor = dict(by_epoch=False)
报错:
[rank4]: Traceback (most recent call last): [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 789, in urlopen [rank4]: response = self._make_request( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 490, in _make_request [rank4]: raise new_e [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 466, in _make_request [rank4]: self._validate_conn(conn) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1095, in _validate_conn [rank4]: conn.connect() [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connection.py", line 652, in connect [rank4]: sock_and_verified = _ssl_wrap_socket_and_match_hostname( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connection.py", line 805, in ssl_wrap_socket_and_match_hostname [rank4]: ssl_sock = ssl_wrap_socket( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/util/ssl.py", line 465, in ssl_wrap_socket [rank4]: ssl_sock = ssl_wrap_socket_impl(sock, context, tls_in_tls, server_hostname) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/util/ssl.py", line 509, in _ssl_wrap_socket_impl [rank4]: return ssl_context.wrap_socket(sock, server_hostname=server_hostname) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/ssl.py", line 513, in wrap_socket [rank4]: return self.sslsocket_class._create( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/ssl.py", line 1104, in _create [rank4]: self.do_handshake() [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/ssl.py", line 1375, in do_handshake [rank4]: self._sslobj.do_handshake() [rank4]: ConnectionResetError: [Errno 104] Connection reset by peer
[rank4]: During handling of the above exception, another exception occurred:
[rank4]: Traceback (most recent call last): [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/requests/adapters.py", line 667, in send [rank4]: resp = conn.urlopen( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 843, in urlopen [rank4]: retries = retries.increment( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/util/retry.py", line 474, in increment [rank4]: raise reraise(type(error), error, _stacktrace) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/util/util.py", line 38, in reraise [rank4]: raise value.with_traceback(tb) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 789, in urlopen [rank4]: response = self._make_request( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 490, in _make_request [rank4]: raise new_e [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 466, in _make_request [rank4]: self._validate_conn(conn) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1095, in _validate_conn [rank4]: conn.connect() [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connection.py", line 652, in connect [rank4]: sock_and_verified = _ssl_wrap_socket_and_match_hostname( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/connection.py", line 805, in ssl_wrap_socket_and_match_hostname [rank4]: ssl_sock = ssl_wrap_socket( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/util/ssl.py", line 465, in ssl_wrap_socket [rank4]: ssl_sock = ssl_wrap_socket_impl(sock, context, tls_in_tls, server_hostname) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/site-packages/urllib3/util/ssl.py", line 509, in _ssl_wrap_socket_impl [rank4]: return ssl_context.wrap_socket(sock, server_hostname=server_hostname) [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/ssl.py", line 513, in wrap_socket [rank4]: return self.sslsocket_class._create( [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/ssl.py", line 1104, in _create [rank4]: self.do_handshake() [rank4]: File "/root/anaconda3/envs/xtuner-env/lib/python3.10/ssl.py", line 1375, in do_handshake [rank4]: self._sslobj.do_handshake() [rank4]: urllib3.exceptions.ProtocolError: ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))