[Bug] Qwen2-VL on NVIDIA L20 fails with Triton shared memory OutOfResources error
Checklist
- [x] 1. I have searched related issues but cannot get the expected help.
- [x] 2. The bug has not been fixed in the latest version.
- [x] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
Qwen2-VL on NVIDIA L20 fails with Triton shared memory OutOfResources error,Qwen2-vl-2B
Reproduction
POST /v1/chat/completions HTTP/1.0
Environment
sys.platform: linux
Python: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: NVIDIA L20
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.4, V12.4.131
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.6.0+cu124
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 12.4
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=2236df1770800ffea5697b11b0bb0d910b2e59e1, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.6.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.21.0+cu124
LMDeploy: 0.8.0+
transformers: 4.50.0
gradio: 5.29.0
fastapi: 0.115.12
pydantic: 2.11.4
triton: 3.2.0
NVIDIA Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-47,96-143 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
ret = await __forward(inputs)
File "/opt/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 249, in __forward
return await self.async_forward(inputs, swap_in_map=swap_in_map, swap_out_map=swap_out_map)
File "/opt/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 660, in async_forward
output = self._forward_impl(inputs, swap_in_map=swap_in_map, swap_out_map=swap_out_map)
File "/opt/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 644, in _forward_impl
output = model_forward(
File "/opt/py3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/opt/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 73, in model_forward
output = model(**input_dict)
File "/opt/lmdeploy/lmdeploy/pytorch/backends/cuda/graph_runner.py", line 161, in __call__
return self.model(**kwargs)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/lmdeploy/lmdeploy/pytorch/models/qwen2_vl.py", line 666, in forward
image_embeds = self.visual(pixel_values, cu_seqlens=vis_cu_seqlens, rotary_pos_emb=vis_pos_emb)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/lmdeploy/lmdeploy/pytorch/models/qwen2_vl.py", line 593, in forward
hidden_states, residual = blk(hidden_states,
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/lmdeploy/lmdeploy/pytorch/models/qwen2_vl.py", line 497, in forward
hidden_states = self.attn(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/lmdeploy/lmdeploy/pytorch/models/qwen2_vl.py", line 414, in forward
attn_output = self.attention(
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/lmdeploy/lmdeploy/pytorch/nn/attention.py", line 154, in forward
return self.impl.forward(
File "/opt/lmdeploy/lmdeploy/pytorch/backends/cuda/flash_attention.py", line 56, in forward
self.flash_attention_fwd(
File "/opt/lmdeploy/lmdeploy/pytorch/kernels/cuda/flashattention.py", line 449, in flash_attention_fwd
_flash_prefill_fwd_kernel[grid](
File "/opt/py3/lib/python3.10/site-packages/triton/runtime/jit.py", line 330, in <lambda>
return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/triton/runtime/jit.py", line 653, in run
kernel.run(grid_0, grid_1, grid_2, stream, kernel.function, kernel.packed_metadata, launch_metadata,
File "/opt/py3/lib/python3.10/site-packages/triton/compiler/compiler.py", line 395, in __getattribute__
self._init_handles()
File "/opt/py3/lib/python3.10/site-packages/triton/compiler/compiler.py", line 388, in _init_handles
raise OutOfResources(self.metadata.shared, max_shared, "shared memory")
triton.runtime.errors.OutOfResources: out of resource: shared memory, Required: 126976, Hardware limit: 101376. Reducing block sizes or `num_stages` may help.
2025-09-01 22:40:26,366 - lmdeploy - ERROR - async_engine.py:791 - session 1 finished, reason "error"
"triton.runtime.errors.OutOfResources: out of resource: shared memory, Required: 126976, Hardware limit: 101376. Reducing block sizes or num_stages may help."
It means triton.jit needs more resources.
Maybe you can open the comment here and try tuning at runtime
@grimoire any suggestions?
https://github.com/InternLM/lmdeploy/blob/967df47f574056740cb45b52338563373730c144/lmdeploy/pytorch/kernels/cuda/flashattention.py#L498 try manually tunning these arguements.
Facing the same problem with Qwen2.5-VL 72B on 4*L20. I'm not quite familiar with these parameters, any suggestions or available resources on how to tune these parameters? Much appreciated.
@cuikaiGitHub 0.8.0 is a quite old version, try switch to our latest release.
If latest release still does not works. Manually tuning values above might works. num_stages is an int scalar between [1, ~) and BLOCK_M/BLOCKN should be [16, ~) and power of 2. Small value means small smem usage.