Checklist
- [x] 1. I have searched related issues but cannot get the expected help.
- [x] 2. The bug has not been fixed in the latest version.
- [x] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
将该模型使用lora训练、合并,再使用lmdeploy进行awq量化后失败,报错如下:
2025-08-08 06:20:51,227 - lmdeploy - INFO - builder.py:65 - matching vision model: InternVL3VisionModel
Traceback (most recent call last):
File "/home/lzy/miniforge3/envs/lmdeploy/bin/lmdeploy", line 8, in
sys.exit(run())
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/cli/entrypoint.py", line 39, in run
args.run(args)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/cli/lite.py", line 111, in auto_awq
auto_awq(**kwargs)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/lite/apis/auto_awq.py", line 86, in auto_awq
vl_model, model, tokenizer, work_dir = calibrate(model,
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/lite/apis/calibrate.py", line 253, in calibrate
vl_model = load_vl_model(model, backend=None, with_llm=True).vl_model
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/vl/model/builder.py", line 71, in load_vl_model
model.build_model()
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/vl/model/internvl3_hf.py", line 75, in build_model
load_checkpoint_and_dispatch(model=model,
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/accelerate/big_modeling.py", line 642, in load_checkpoint_and_dispatch
return dispatch_model(
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/accelerate/big_modeling.py", line 502, in dispatch_model
model.to(device)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3851, in to
return super().to(*args, **kwargs)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1343, in to
return self._apply(convert)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 903, in _apply
module._apply(fn)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 903, in _apply
module._apply(fn)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 930, in _apply
param_applied = fn(param)
File "/home/lzy/miniforge3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1336, in convert
raise NotImplementedError(
NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() when moving module from meta to a different device.
Reproduction
lmdeploy lite auto_awq InternVL3-8B-hf-sft --work-dir . --dtype bfloat16
Environment
lmdeploy 0.9.2
gpu:4090
Error traceback
同问,相同的报错,InternVL3-8B就可以直接量化
目前已经解决了问题,首先将hf模型转化为custom模型,使用官方的脚本,然后进行量化;(要修改transformers和datasets版本)
但是量化后推理效果非常之离谱,尽管格式学对了,可推理的值像随机填写的一样,是不是量化时对齐的数据集要进行修改?