[Bug] 更改session_len无法解决输出截断的问题
Checklist
- [x] 1. I have searched related issues but cannot get the expected help.
- [x] 2. The bug has not been fixed in the latest version.
- [ ] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
(多模态qwen2.5-vl-32b推理)要求输出的结果token比较长,使用默认参数会发生输出内容被截断的情况,更改session_len还是无法解决问题,还是会出现截断,我该怎么能增加输出token数呢?
Reproduction
with pipeline('/data02/wangq-bj/wq/LLaMA-Factory-main/output/Bridge_layout/20250413_2230_qwen2.5_vl-32b_lora_sft',
backend_config=TurbomindEngineConfig(tp=1, session_len=8192,)) as pipe:
image = load_image('/data02/wangq-bj/download/data/立面/0_测试_1/单页/314-S346 报批稿PDF汇总/314-S346 报批稿PDF汇总_04 第四篇 桥梁涵洞#P8.png')
response = pipe(("
Clear the torch cache and perform garbage collection if needed
import torch import gc torch.cuda.empty_cache() gc.collect()
Environment
sys.platform: linux
Python: 3.9.21 (main, Dec 11 2024, 16:24:11) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA H100 80GB HBM3
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.1, V12.1.105
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.6.0+cu124
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 12.4
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=2236df1770800ffea5697b11b0bb0d910b2e59e1, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.6.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.21.0+cu124
LMDeploy: 0.7.3+
transformers: 4.49.0
gradio: 4.44.1
fastapi: 0.115.12
pydantic: 2.11.3
triton: 3.2.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX NODE SYS SYS 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE SYS SYS 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE SYS SYS 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE PIX SYS SYS 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS PIX NODE 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS NODE PIX 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS NODE NODE 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS NODE NODE 48-95,144-191 1 N/A
NIC0 PIX NODE NODE NODE SYS SYS SYS SYS X NODE SYS SYS
NIC1 NODE NODE NODE PIX SYS SYS SYS SYS NODE X SYS SYS
NIC2 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS X NODE
NIC3 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
Error traceback
@Amber-Believe
可以参考以下代码,把 generation config 中的 max_new_tokens 参数调大。max_new_tokens 是控制输出长度上限的
import os
from lmdeploy import pipeline, PytorchEngineConfig, GenerationConfig
from lmdeploy.vl import load_image
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
model_path = "xxx"
# Configure the PyTorch backend engine
pt_backend_config = PytorchEngineConfig(
tp=1,
cache_max_entry_count=0.8,
session_len=8192, # Maximum session length (context length)
)
gen_config = GenerationConfig(
max_new_tokens=8192, # Maximum number of new tokens to generate
)
def main():
# Initialize the pipeline with the model and backend configuration
pipe = pipeline(
model_path,
backend_config=pt_backend_config,
)
image_url = 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
image = load_image(image_url)
prompt = "Describe this image."
response = pipe((prompt, image), gen_config=gen_config)
print(response)
if __name__ == '__main__':
main()
好的 问题已解决
session_len
请问session_len的长度包含输出token吗?还是只对输入长度有效