lmdeploy
lmdeploy copied to clipboard
lmdeploy对DeepSeek-R1-Distill-Llama-70B进行api推理时,使用H100的两张显卡,共160G,会出现out of memory
Checklist
- [x] 1. I have searched related issues but cannot get the expected help.
- [x] 2. The bug has not been fixed in the latest version.
- [x] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
lmdeploy对DeepSeek-R1-Distill-Llama-70B进行api推理时,使用H100的两张显卡,共160G,会出现out of memory;当指定4张卡,共320G,且在命令中加入--tp 4时,70B能够正常运行。我测试了deepseek蒸馏版的70B、32B、14B、8B,api推理时所需显存分别为292G、280G、74G、73G,为什么会出现这种情况,显存为什么用了这么多。一般情况下70B不是140G显存就够了吗?
Reproduction
CUDA_VISIBLE_DEVICES=3,4 lmdeploy serve api_server /app123/model/DeepSeek-R1-Distill-Llama-70B --backend turbomind --server-port 8000 --device cuda --chat-template deepseek
Environment
sys.platform: linux
Python: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA H100 80GB HBM3
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.4.1+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.4.2 (Git Hash 1137e04ec0b5251ca2b4400a4fd3c667ce843d67)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.4.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.19.1+cu118
LMDeploy: 0.6.5+
transformers: 4.48.1
gradio: 5.13.1
fastapi: 0.115.7
pydantic: 2.10.6
triton: 3.0.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PXB PXB SYS SYS SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 PXB PXB SYS SYS SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS SYS PXB PXB SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS SYS PXB PXB SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS PXB PXB SYS SYS 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS PXB PXB SYS SYS 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS PXB PXB 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS PXB PXB 48-95,144-191 1 N/A
NIC0 PXB PXB SYS SYS SYS SYS SYS SYS X PXB SYS SYS SYS SYS SYS SYS
NIC1 PXB PXB SYS SYS SYS SYS SYS SYS PXB X SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS X PXB SYS SYS SYS SYS
NIC3 SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS PXB X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS X PXB SYS SYS
NIC5 SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS PXB X SYS SYS
NIC6 SYS SYS SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS X PXB
NIC7 SYS SYS SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS PXB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
Error traceback
Traceback (most recent call last):
File "/opt/py3/bin/lmdeploy", line 33, in <module>
sys.exit(load_entry_point('lmdeploy', 'console_scripts', 'lmdeploy')())
File "/opt/lmdeploy/lmdeploy/cli/entrypoint.py", line 42, in run
args.run(args)
File "/opt/lmdeploy/lmdeploy/cli/serve.py", line 339, in api_server
run_api_server(args.model_path,
File "/opt/lmdeploy/lmdeploy/serve/openai/api_server.py", line 1088, in serve
VariableInterface.async_engine = pipeline_class(
File "/opt/lmdeploy/lmdeploy/serve/async_engine.py", line 159, in __init__
self._build_turbomind(model_path=model_path,
File "/opt/lmdeploy/lmdeploy/serve/async_engine.py", line 198, in _build_turbomind
self.engine = tm.TurboMind.from_pretrained(
File "/opt/lmdeploy/lmdeploy/turbomind/turbomind.py", line 302, in from_pretrained
return cls(model_path=pretrained_model_name_or_path,
File "/opt/lmdeploy/lmdeploy/turbomind/turbomind.py", line 112, in __init__
self.model_comm = self._from_hf(model_source=model_source,
File "/opt/lmdeploy/lmdeploy/turbomind/turbomind.py", line 226, in _from_hf
self._create_weight(model_comm)
File "/opt/lmdeploy/lmdeploy/turbomind/turbomind.py", line 152, in _create_weight
future.result()
File "/usr/lib/python3.10/concurrent/futures/_base.py", line 458, in result
return self.__get_result()
File "/usr/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/usr/lib/python3.10/concurrent/futures/thread.py", line 58, in run
result = self.fn(*self.args, **self.kwargs)
File "/opt/lmdeploy/lmdeploy/turbomind/turbomind.py", line 145, in _create_weight_func
model_comm.create_shared_weights(device_id, rank)
RuntimeError: [TM][ERROR] CUDA runtime error: out of memory /opt/lmdeploy/src/turbomind/utils/memory_utils.cu:31
CUDA_VISIBLE_DEVICES=3,4 lmdeploy serve api_server /app123/model/DeepSeek-R1-Distill-Llama-70B --backend turbomind --server-port 8000 --device cuda --chat-template deepseek
需要加上 --tp 2
加上以后命令为:CUDA_VISIBLE_DEVICES=3,4 lmdeploy serve api_server /app123/model/DeepSeek-R1-Distill-Llama-70B --backend turbomind --server-port 8000 --device cuda --chat-template deepseek --tp 2
报错:[WARNING] gemm_config.in is not found; using default GEMM algo
[WARNING] gemm_config.in is not found; using default GEMM algo
terminate called after throwing an instance of 'std::runtime_error'
what(): [TM][ERROR] pointer_mapping_ does not have information of ptr at 0x1647104000. Assertion fail: /opt/lmdeploy/src/turbomind/utils/allocator.h:284
Aborted (core dumped) 怎么解决?
你好,请问你部署deepseek蒸馏模型的时候,它会think吗?