[Bug] lmdeploy lite auto_awq量化错误
Checklist
- [X] 1. I have searched related issues but cannot get the expected help.
- [X] 2. The bug has not been fixed in the latest version.
- [X] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
命令lmdeploy lite auto_awq THUDM/glm-4-9b-chat --work-dir ./models/glm-4-9b-chat-int4 --search-scale True --batch-size 8报错。
但是命令lmdeploy lite auto_awq THUDM/glm-4-9b-chat --work-dir ./models/glm-4-9b-chat-int4就没有问题,正常量化和推理。
Reproduction
lmdeploy lite auto_awq THUDM/glm-4-9b-chat --work-dir ./models/glm-4-9b-chat-int4 --search-scale True --batch-size 8
Environment
sys.platform: linux
Python: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: NVIDIA GeForce RTX 2080 Ti
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.5, V12.5.82
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.2.2+cu121
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.3.2 (Git Hash 2dc95a2ad0841e29db8b22fbccaf3e5da7992b01)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 12.1
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.9.2
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.2.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.17.2+cu121
LMDeploy: 0.5.2.post1+
transformers: 4.42.4
gradio: 4.38.1
fastapi: 0.111.1
pydantic: 2.8.2
triton: 2.2.0
NVIDIA Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-27 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
Loading calibrate dataset ...
Token indices sequence length is longer than the specified maximum sequence length for this model (1104488 > 128000). Running this sequence through the model will result in indexing errors
Traceback (most recent call last):
File "/home/zanepoe/miniconda3/envs/lmdeploy/bin/lmdeploy", line 8, in <module>
sys.exit(run())
^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/cli/entrypoint.py", line 36, in run
args.run(args)
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/cli/lite.py", line 139, in auto_awq
auto_awq(**kwargs)
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/apis/auto_awq.py", line 105, in auto_awq
vl_model, model, tokenizer, work_dir = calibrate(model,
^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/apis/calibrate.py", line 242, in calibrate
calib_ctx.calibrate(all_data)
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/quantization/calibration.py", line 269, in calibrate
_ = model(data.to(self.device))
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/.cache/huggingface/modules/transformers_modules/c24133cef34ff7a7010f1e97c113effdead0966b/modeling_chatglm.py", line 892, in forward
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/.cache/huggingface/modules/transformers_modules/c24133cef34ff7a7010f1e97c113effdead0966b/modeling_chatglm.py", line 722, in forward
layer_ret = layer(
^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/quantization/calibration.py", line 464, in _forward
auto_scale_block(mod, batch_kwargs[i], self.w_bits,
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/quantization/calibration.py", line 366, in auto_scale_block
_auto_get_scale(
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/quantization/calibration.py", line 359, in _auto_get_scale
best_ratio = _search_module_scale(module2inspect, layers, inp.value,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/lmdeploy/lite/quantization/calibration.py", line 306, in _search_module_scale
org_out = block(x, **kwargs)
^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zanepoe/miniconda3/envs/lmdeploy/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: SelfAttention.forward() missing 2 required positional arguments: 'attention_mask' and 'rotary_pos_emb'
hi, pls. check https://github.com/InternLM/lmdeploy/issues/2210
你好 现在我能进行w8a8量化,但是加载模型就会报错
Traceback (most recent call last):
File "/data/liuyuanchao/swift/lmdeploy/dss_quato.py", line 14, in <module>
pipe = pipeline(model_path, chat_template_config=ChatTemplateConfig('llama3'))
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/api.py", line 89, in pipeline
return pipeline_class(model_path,
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/serve/vl_async_engine.py", line 24, in __init__
super().__init__(model_path, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/serve/async_engine.py", line 190, in __init__
self._build_turbomind(model_path=model_path,
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/serve/async_engine.py", line 235, in _build_turbomind
self.engine = tm.TurboMind.from_pretrained(
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/turbomind.py", line 340, in from_pretrained
return cls(model_path=pretrained_model_name_or_path,
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/turbomind.py", line 144, in __init__
self.model_comm = self._from_hf(model_source=model_source,
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/turbomind.py", line 235, in _from_hf
output_model = OUTPUT_MODELS.get(output_model_name)(
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/deploy/target_model/w4.py", line 80, in __init__
super().__init__(input_model, cfg, to_file, out_dir)
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/deploy/target_model/base.py", line 172, in __init__
self.cfg = self.get_config(cfg)
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/deploy/target_model/w4.py", line 92, in get_config
w1s, _, _ = bin.ffn_scale(i)
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/deploy/source_model/llama_awq.py", line 52, in ffn_scale
return ensure_fp16orint32(self._ffn(i, 'scales'))
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/turbomind/deploy/source_model/llama.py", line 103, in _ffn
tensor = self.params[
KeyError: 'llm.model.layers.0.mlp.gate_proj.scales'
w8a8 is only supported by pytorch engine. Pls. set backend_config to PytorchEngineConfig when using pipeline
pipe = pipeline(model_path,
backend_config=PytorchEngineConfig(tp=1,
session_len=4096,
max_prefill_token_num=4096,
cache_max_entry_count=0.5),
)
报错了
raise ValueError(
ValueError: The model's quantization config from the arguments has no quant_method attribute. Make sure that the model has been correctly quantized
@lyc728 hi, sorry for misunderstanding. auto_awq is for w4a16 and smooth_quant is for w8a8.
In your case, you are using w4a16, which is only supported by Turbomind engine and it needs to input model_format='awq'.
This is how to use in pipeline: https://lmdeploy.readthedocs.io/en/latest/quantization/w4a16.html#inference
from lmdeploy import pipeline, TurbomindEngineConfig
engine_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline("./internlm2_5-7b-chat-4bit", backend_config=engine_config)
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)
你好 现在我能进行w8a8量化,但是加载模型就会报错
你好 我是参考这个文档进行的量化
https://github.com/InternLM/lmdeploy/blob/main/docs/zh_cn/quantization/w8a8.md
lmdeploy lite smooth_quant internlm/internlm-chat-7b --work-dir ./internlm-chat-7b-w8
现在是无法加载模型进行推理,如果把参数设置成model_format='awq' 这个应该是w4的把 跟我转模型不符合
根据这个表格,glm4是不支持w8a8(pytorch engine),但支持w4a16(turbomind engine). https://lmdeploy.readthedocs.io/en/latest/supported_models/supported_models.html#models-supported-by-pytorch https://lmdeploy.readthedocs.io/en/latest/supported_models/supported_models.html#models-supported-by-turbomind
我是intervl2和minicpm2.5
好的